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Abstract
Shape-shifting materials have been part of sci-fi literature for decades. But if tomorrow we
invent them, how are we going to communicate to them what shape we want them to morph
into? If we look at our history, for thousands of years humans have been using the dexterity of
their hands as primary means to alter the topology of their surroundings. While direct
manipulation, as a primary method for form giving, allows for high precision deformation, the
scope of interaction is limited to the scale of the hand. In order to extend the scope of
manipulation beyond the hand scale, tools were invented to reach further and to augment the
capabilities of our hands. In this thesis, I propose "Amphorm", a perceptually equivalent
example of Radical Atoms, our vision on the interaction techniques for future, highly malleable,
shape-shifting materials. "Amphorm" is a cylindrical kinetic sculpture that resembles a vase.
Since "Amphorm" is a dual citizen between the digital and the physical world, its shape can be
altered in both worlds. I describe novel interaction techniques for rapid shape deformation both
in the physical world through free hand gestures and in the digital world through a Graphical
User Interface. Additionally I explore how the physical world could be synchronized with the
digital world and how tools from both worlds can jointly alter dual-citizens.
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Shape changing materials have been prominent in the sci-fi literature for decades and have

been featured as the ultimate material that can transform into any shape we would desire.

Imagination runs wild, when thinking about objects in our surroundings that can change the way

they look and behave dynamically. Yet, when we look at Tony Stark instantiating a new material

on the fly, we find little or no logic in the process by which he creates the new shape of an

object.

This is a thesis about interaction design. In particular, it is about interaction design for form

giving - the process by which humans shape their surroundings. In the recent years we have

seen a rapid evolution of tools for form giving, but a radical change in form giving is

approaching, by which the malleable object will evolve into a part digital entity.

My research thinks about a future where dynamic materials will exist not only in research labs

and in the industry, but ubiquitously everywhere. How will we (as the human race) take control

over surfaces we own? Is there an intuitive way to interact with the architectural elements

around us to change their structure? How will interaction change with the objects if they will be

shipped with a default form, but could be customized on the fly? Limitless transformation is no

better than chaos - what constraints will these systems have to obey? In this document I try to

answer these questions, by taking a closer look at possible interaction techniques with dynamic

materials.

You may ask - how can we hypothesize about interaction techniques without the existence of

the aforementioned material? Although, today we do not have free-form shape changing

materials, many scientific groups are working hard on enabling technologies that will potentially

yield a material with (almost) limitless shape changing capabilities. More importantly we know

how we want these materials to behave, thus we can create prototypes that mimic their

behavior. I call these entities perceptually equivalent to shape changing materials, because they

look and behave as them in limited scenarios.

In order to address the questions raised above I designed and constructed a perceptually

equivalent interface, called Amphorm: a vase that can change its shape, computationally. I

argue that until the enabling technologies arrive we will continue experimenting with

perceptually equivalent interfaces. To aid the future designers of these interfaces I developed
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taxonomy for the structure of these devices, decomposing them into a three-tier system that I

expand on in Chapter VI.

Through the later part of my thesis I discuss interaction techniques suitable for manipulating the

shape of Amphorm, ranging from free hand gestures to traditional Graphical User Interface

(GUI) based approaches.
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CHAPTER II

A Brief History of Form
Giving
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Form
Form, as the externalization of an idea has been present in our civilization for several millennia.

Humans have used their hands and tools to directly manipulate materials to alter/deform their

shape. The process, which turns intangible ideas into physical representations, is what we call

form giving.

Representation Operator Operand

Fig. 1 - Form giving feedback loop

A number of tools have been invented to augment our capabilities to deform materials - e.g. a

knife increases our precision, while a chisel extends our nails, allowing shaping of rigid

materials. Despite of the invention of hundreds of tools, fundamentally humans can still only

constructively (blowing up a mountain with dynamite does not count - this thesis focuses on

constructive form giving) shape physical objects rapidly on the scale of their hands.

The designer's role

Pre-historic

The role of designers changed radically through the history of form giving. Dating from the

prehistoric times humans created objects themselves that they needed for their everyday life.

These were mostly weapons (axes, chisels), but we can also find tools that they used for

digging and shaping the earth (e.g. hoe).

Classical era

Throughout the classical era, the home as a static entity appeared and humans started creating

objects not merely for function, but for aesthetic companions in their surroundings.

16
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Fig. 2 - Prehistoric artifacts: a stone projectile point, a wooden harpoon, a hoe and a bone

dagger. Images courtesy of the Smithsonian National Museum of History.

The creation of these artifacts required special skills, thus artisans started appearing, for

specific processes - trades of blacksmiths, potters, and carpenters emerged. The role of the

designers changed - they were not creating objects for themselves anymore, but for someone

else. Most commonly these artifacts were made personally for the person who ordered it (with

specific criteria), thus the designer was aware of the application specific constraints that the

object will have to stand against. In case of a vase these constraints might have been the height

and shape of the vase, depending on the type of flowers you store in them, the width of the

vase, which is constrained by the space the vase is stored, etc.

Fig. 3 - Amphorae in Pula Museum of Archeology in Croatia

Industrial Revolution

The trend of people with specialized skills gathering into clusters of trades, creating special

objects for individuals continued until the industrial revolution. The industrial revolution

17



standardized the design of objects. With the emergence of usability and industrial design, the

role of designers changed once again - today they are responsible to create objects that are

general, multi-purpose, easy to serialize and in some cases sustainable. The objects are

shipped in their final form, after a highly optimized manufacturing process that makes them non-

customizable.

Maker movement

In the past decade a very interesting counter movement emerged: the Maker Movement. The

manifesto of this movement is to democratize industrial design, to a broader crowd, in order to

empower everyone to design and manufacture their ideas: "Transformative change happens

when industries democratize, when they're ripped from the sole domain of companies,

governments, and other institutions and handed over to regular folks. The Internet democratized

publishing, broadcasting, and communications, and the consequence was a massive increase

in the range of both participation and participants in everything digital - the long tail of bits. Now

the same is happening to manufacturing - the long tail of things." - excerpt from the Wired

Maker Manifesto [Wired].

The Maker Movement proposes sustainable manufacturing through mass customization: objects

are designed directly by the person, who becomes the user of them. Since these objects are not

multi-purpose, general entities, but rather serve the user's needs, the manufacturing process

aims to create exactly what the user is in need of.

The role of the designer radically changes for participants of the maker movement: the

designer/creator becomes the user of his own design, iterative design merges completely with

owning the entity.

th

Fig. 4 - Iterative design: Representation > Digital replica > Machining > Physical model
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Transformative design

My vision beyond the Maker Movement, proposes a future between industrial revolution and the

maker movement. Transformable materials will deliver objects to our home, workspace or other

living environments with non-final shapes. Non-final in this context refers to dynamic, malleable

shapes that can alter their surface through user input, via computation. Two designers

determine the final shape of the object: the industrial designer in the factory and the end-user.

The role of industrial designers changes: contrary to today's practice, where industrial designers

create final shapes, for a broad set of functions, they will design shapes that can transform into

a certain subset of shapes. For example in the case of a vase they may design an object that

can transform it's shape from a cylindrical structure to any vase-like cylindrical structure with

varying contour. The set of shapes that the object can transform into is what I call the shape

space.

Not-achievable shapes Shape space (Achievable shapes)

Fig. 5 - Shape space: the set of achievable shapes

We can call this the era of transformative design in the context of form giving. It will democratize

the design of everyday objects in our environment, similar to the maker movement. However,

instead of creating tailored final shapes through democratized fabrication techniques,
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transformative design will create dynamic entities that will interact with the end user directly, in

order to change their shape.

Today there are no materials that are available and suitable for such interfaces. Fundamental

research has to be completed before we will see one material transform computationally into

different shapes. In the next chapter I will outline Radical Atoms, a road map towards the

transformative material future.

References
[Wired] http://www.wired.com/magazine/2010/01/ffnewrevolution/all/1
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CHAPTER III

Radical Atoms

"Your theory is crazy, but not crazy enough to be true."

(Niels Bohr)
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Radical Atoms is the vision of a hypothetical, extremely malleable and reconfigurable material

that can be described by a digital model so that dynamic changes in digital information can be

reflected by a dynamic change in physical state, and vice versa. Today the synchronization of

digital and physical data almost exclusively happens in the form of a pixel glowing with a

different color. These hypothetical materials would allow us to change the shape of everyday

objects.

In this chapter I will summarize the history of the vision, starting from Graphical User Interfaces

(GUI), through Tangible User Interfaces (TUI) leading to Radical Atoms (RA). In order to

connect RA to current research initiatives I will walk through the core concept of RA - from

basic design principles to environmental impact. In part I will give a detailed overview of

difficulties in technology that hinder us to implement the RA vision today. Finally I will conclude

this chapter by proposing a specific method to construct "perceptually equivalent interfaces" -

interfaces that look and feel like Radical Atoms, but trade constraints for "implementability".

This chapter quotes large parts and follows and extends the structure of an article I co-authored,

with Hiroshi Ishii, Leo Bonanni and Jean-Baptiste Labrune, which appeared in Interactions

Magazine [RA], in January 2012.

From GUI to Radical Atoms

From GUI to TUI
Graphical User Interfaces represent information (bits) through pixels on bit-mapped displays.

These graphical representations can be manipulated through generic remote controllers such as

mice, touch screens, and keyboards. By decoupling representation (pixels) from control (input

devices), GUIs provide the malleability to graphically mediate diverse digital information and

operations. These graphical representations and "see, point, and click" interaction represented

significant usability improvements over Command User Interfaces (their predecessor), which

required the user to "remember and type" characters.

However powerful, GUI's are inconsistent with our interactions with the rest of the physical

world. Tangible interfaces take advantage of our haptic sense and our peripheral attention to

make information directly malleable and intuitively perceived through our foreground and

peripheral senses.
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Tangible interfaces are both an alternative and a complement to graphical interfaces,

representing a new path to Mark Weiser's vision of Ubiquitous Computing [Weiser]. Weiser

wrote of weaving digital technology into the fabric of physical environments and making

computation invisible. Instead of melting pixels into the large and small screens of devices

around us, tangible design seeks an amalgam of thoughtfully designed interfaces embodied in

different materials and forms in the physical world - soft and hard, robust and fragile, wearable

and architectural, transient and enduring.

From TUI to RA
Although the tangible representation allows the physical embodiment to be directly coupled to

digital information, it has limited ability to represent change in material or physical properties.

Unlike pixels on screens, it is difficult to change the form, position, or properties (e.g. color, size,

stiffness) of physical objects in real time. This constraint can make the physical state of TUIs

inconsistent with underlying digital models.

Concept of Radical Atoms

"Radical Atoms" is our vision for human interactions with dynamic physical materials that are

computationally transformable and reconfigurable. "Radical Atoms" is based on a hypothetical,

extremely malleable and dynamic physical material that is bi-directionally coupled with

underlying digital model (bits) so that dynamic changes of the physical form can be reflected in

the digital states in real-time, and vice-versa.

We envision that Radical Atoms should fulfill the following three requirements, in order to utilize

dynamic affordance as a medium for representation, while allowing bidirectional input to control

the shape and thus the underlying computational model:

1. Transform its shape to reflect underlying computational state and user input,

2. Conform to constraints, imposed by the environment and user input,

3. Inform its transformational abilities (dynamic affordance).

The following figure illustrates the dynamic interactions between the user, material, and

underlying digital (computational) model.
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user
constraints

factory
constraints

Fig. 6 - Pillars of Interaction design for Radical Atoms

Transform
Radical Atoms couples the shape of an object with an underlying computational model. The
interface has to be able to transform its shape in order to: a) modify the model through the
shape of the interface and b) reflect and display changes in the computational model, by
changing its shape in synchronicity.

User may reconfigure and transform the interface manually through direct manipulation,
gestural commands, or conventional GUIs.

The Radical Atoms material should be manually deformable and reconfigurable with human
hands. We envision "digital clay" as a physically represented malleable material that is synced
with the coupled digital model. Direct manipulation by users' hands such, as deformation and
transformation of sensor-rich objects and materials, should be immediately translated into an
underlying digital model to update its internal digital states. Likewise, we envision that "digital &
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physical building blocks" allow users to translate, rotate, and reconfigure the structure quickly,

taking advantage of the dexterity of human hands, and the configuration changes are reflected

on the underlying digital model. This capability will add a new modality of the input from

physical (users) to the digital world.

The material can transform by itself to reflect and display the changes in the underlying

digital model serving as dynamic physical representations (shape display) of digital

information.

This is the extension of the concept of current graphical representations on the 2D screen with

pixels, on to 3D physical representations with new dynamic matter that can transform its shape

and states based on commands from the underlying digital model. This capability will add a

new modality of the output from the digital to the physical world perceived by users.

Conform

Material transformation has to conform to the programmed constraints.

Since these interfaces can radically change their shapes in human vicinity, they need to

conform to a set of constraints. These constraints are imposed by physical laws (e.g. total

volume has to be constant, without phase-changes) and by human common sense (e.g. user

safety has to be ensured at all times).

Inform

Material has to inform users with its transformational capabilities

In 1977 Gibson [Gibson] proposed that we perceive the objects in our environment through what

action objects have to offer, a property he coined as affordance. For example, through evolution

we instinctively know that a cup affords storing volumes of liquid. Industrial design in the past

decade has established a wide set of design principles to inform the user of an object's

affordance, for example a hammer's handle tells the user where to grip the tool.

In the case of dynamic materials these affordances change as the interface's shape alters. In

order to interact with the interface, the user has to be continuously informed about the state the
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interface is in, and thus of the function it can perform. An open interaction design question

remains: how do we design for dynamic affordances?

Design by constraints
One of the approaches that interaction designers may take, in order to overcome the problem of

informing the user about dynamic affordances is designing by constraints. I believe all of these

interfaces will be designed with constraints built into them. Some of the constraints are of

course physical, for example the mass of the interface cannot change. Other constraints

however will be designed into them.

For example a vase that can change its shape will be able to change its surface: it will be able

to manipulate its height and width and different regions, but it will not loop into itself, because it

has to be able to hold a flower. By limiting the shape space to height and width alteration we

constrained interactions, which could be the starting point to alter the shape of the interface.

Perceptually equivalent interfaces

Today enabling technologies have not evolved to a point where we have a homogeneous

material that can be computationally controlled. Many research groups are working on parts of

this scientific holy grail - in our paper [RA] we give a short overview of the different fields we

think are important enabling cornerstones on the road to programmable/reconfigurable matter.

In my thesis I assume that this innovation is going to happen, without theorizing which

technology is eventually going to emerge. Instead I focus on the interaction techniques that we

may use once these interfaces will be in general consumption.

A valid question may arise in the reader:

26
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Freedom - It is impossible to design for a material that has infinite degrees of freedom. On the

flip side it would be extremely hard to use a material that can transform into any arbitrary shape.

I think when we will have technology it will be up to the "shape-designers" to constrain the

infinite degrees of freedom into application-specific ones, which I described above as the shape

space.

Modularity - when a software engineer designs an application based on a framework, he may

not know how the framework itself works. He only has to understand the connection points to

that framework. These connection points for Radical Atoms are tackled through the three pillars

of "conform-inform-transform".

In order to prototype interaction techniques with these highly malleable materials I will create a

perceptually equivalent interface to Radical Atoms that mimics the behavior of an interface that

we might use in the future. The internal structure will differ greatly from the future highly

malleable materials, but I am trying to create the look and feel of a reconfigurable object.

Homogenous vs. heterogeneous approach
The hypothetical, highly malleable material of the future will be a homogenous material, when

observed from a human scale. It will provide integration for:

* Actuation - to mechanically move parts

" Addressing - to select only a subset of the parts

* Sensing - in order to perform measurements for user input

" Computation - to perform computation on the material.

Although all of these technologies individually scale down, system integration does not allow for

a homogeneous, integrated design process today, when constructing a perceptually equivalent

interface.

Interaction with dynamic interfaces

Through Radical Atoms we focus on the interaction with a hypothetical dynamic material, rather

than the technological difficulties to develop such a material. We have explored a variety of

application scenarios in which we interact with Radical Atoms as digital clay for form giving and

as a hand tool with the ability for context-aware, semi-automatic transformation.
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Direct Touch & Gestural Interaction

The oldest interaction technique for form giving is direct touch - humans have been forming clay

with their hands for thousands of years. Direct touch offers high precision manipulation with

direct haptic feedback from the operand, but constrains the user to reshape the material only at

the scale of her hand. Later in history, for other materials (e.g. wood and metal) we developed

shaping tools to reach a desired form. Still the scope of manipulation remained on the

hand/body scale. Through the Recompose/Relief project [Recompose] we explored how we can

combine low-precision but extensive gestural interaction with high-precision direct manipulation

at a fixed scale. Gestures coupled with direct touch create an interaction appropriate for Radical

Atoms, since users are able to rapidly reform dynamic materials at all scales.

Context-Aware Transformation

Hand tools operate on objects, for example a hammer operates on a nail. We can also imagine

writing tools that can change form and function between a pen, brush and stylus based on the

type of surface to write/draw on: a sheet of paper, a canvas, or a touchscreen. The way a user

holds the tool can also inform how the tool transforms: the way we hold a knife and a fork are

distinct. If the soup bowl is the "operand," then it is likely the operator should be a spoon, not a

fork.

Having the ability to sense the grasping hands, as well as surrounding operands and the

environment, tools might be able to transform to the most appropriate form using contextual

knowledge. An umbrella may change its form and softness based on the direction and strength

of wind and rain. A screwdriver could transform between a Phillips and flat head depending on

the screw it is operating on.

These context-aware transformations require a lot of domain knowledge and inference to

disambiguate and identify the best solution. While the implementation of these interfaces is

beyond present-day technological capabilities, this vision serves as a guiding principle for our

future research explorations.
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CHAPTER IV

Related Work

"The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would
be good enough to sit in. Handcuffs displayed in such a room would be
confining, and a bullet displayed in such a room would be fatal"

(The Ultimate Display - Ivan Sutherland)
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In this Chapter I will list previous work on shape displays, gestural interaction and digital from

giving, related to my thesis.

In 1965 Evan Sutherland proposed the ultimate display, a hypothetical room in the future, where

every single atom can be controlled cornputationally: "The ultimate display would, of course, be

a room within which the computer can control the existence of matter. A chair displayed in such

a room would be good enough to sit in. Handcuffs displayed in such a room would be confining,

and a bullet displayed in such a room would be fatal" [Sutherland].

In other words total control over matter computationally, as well as complete feedback of where

matter is down to the last atom. Although philosophically this vision is intriguing, current

technology is not able to-implement it (not to mention that to sense N atoms in a room, you will

need a Quantum-computer of at least N+1 particles for sensing, thus another room of the same

size).

Interaction with matter in this world changes dramatically. The only barrier to construct objects,

structures and surfaces will be to communicate our intent to the machinery that controls the

room, which will be solved by interaction design.

Today we only approximate these interfaces with "perceptually equivalent interfaces" of the

Ultimate room/Radical Atoms vision. I will start from Tangible User Interfaces that are relevant

to the discussion, leading through a special subset of TUIs, which are called Shape Displays.

After Shape Displays I will list future shape displays enabled by emerging technologies that will

be important next steps toward the Ultimate room. At the end of this chapter I will also review

projects in the field of digital form giving, since eventually the Ultimate display will be accessible

from a joint domain that shares attributes from both the digital and the physical worlds.

TUs
The central characteristic of tangible interfaces is the coupling of tangibles (as representation

and control) to underlying digital information and computational models. One of the biggest

challenges is to keep the physical and digital states in sync when the information changes

dynamically either by users' input (direct manipulation of tangibles) or results of underlying

computation. Following I will describe an interface evolutions that evolved towards the vision of

Radical Atoms.
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Illuminating clay Sandscape Relief Recompose

Fig. 7 - Evolution of the Illuminating Clay project-

One of the most relevant interface evolutions marked by a chain of projects started from the

Illuminating Clay project [Piper], where a the surface topology of the -interface was malleable

directly by the user. The next generation of this evolution was Sandscape [Sandscape], where

the malleable surface was a pit of glass beads, scanned continuously by a depth camera to

reconstruct a digital model of the surface made up of plastic beads. By using this setup, the

digital model became directly accessible through moving beads around manually.

By making the digital model accessible by direct physical manipulation the iteration cycle of

editing shortened considerably, while making the interaction very natural and intuitive. Still one

problem persists: the physical model is not accessible, when edits are made to the digital one.

In other words the digital model remains in sync when the physical model is affected, but not

vice versa.

In order to resolve this problem Leithinger constructed Relief [Relief], a shape display capable of

rendering surfaces, using 144 pins that can actuate their length vertically as well as sense the

user's input through direct touch. Relief is capable of syncing both from the physical to the

digital world and vice versa - completing the interaction circle. The next problem on the

roadmap is user interactions: the Relief system can only sense user input through direct

manipulation, whereas the scope of interaction remains on the hand scale. In a hypothetical

room, such as the Ultimate display, one will aspire to rearrange matter at every scale, thus

expanding interaction to a larger than hand scale is essential.

The next iteration in this chain of projects is one of my earlier works: the Recompose system

[Recompose]. Recompose builds atop Relief and extends it with a gestural tracking system to

allow user manipulation through gestural control.
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Fig. 8 - Recompose: Gestural interaction with a shape display

Shape displays

Shape displays are haptic interfaces with the ability to create and deform physical shapes in rea

time.

Shape displays today can be broken down into two categories: 2.5D Shape displays and

amorphous shape displays. 2.5D shape displays consist of a planar grid of actuators where

each of the individual actuators (often referred to as pins) can alter the topology of the interface

locally, by moving itself up and down along the normal axis of the surface. Amorphous shape

displays consists of unordered actuator arrangements, typically arrangements include random

or concentric actuator placements.

2.5D Shape Displays

While 2.5D shape displays vary in size, type of actuation, and speed of shape output they all

follow the same principle of shape generation. An array of actuated pins forms a surface, similar

to pin screen toys (Fig. 9). This layout of actuators allows simple mechanical design, since the
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actuators can be hidden under the surface,

the surface.

compared to the complexity of embedding them into

Fig. 9 - The Pinpression toy

2.5D shape displays are limited in the types of shapes they can generate. Most fundamentally

they do not allow overhangs. Another limitation is the resolution of the actuated points. Due to

the size and complexity of the actuators, they cannot be packed densely enough to create a

resolution capable of outputting a perceived continuous shape [Shimojo]. Perceived resolution

can be increased by stretching a malleable surface over the pin array producing the illusion of

continuous shape.

Actuators have a limited linear range. If the shape formed by the interface exceeds this range, it

will be clipped. The generated shape may be augmented with visuals: either through LED's

embedded in the pins or top-down projection on the surface.

The "surface display", created by Hirota and Hirose in 1993 [Hirota] consists of a 4 x 4 linear

actuator array. The actuators form a physical surface from the depth buffer of arbitrary 3D

geometry.

Iwata et al. developed FEELEX in 1995 to overcome shortcomings they identified in their

previously constructed haptic interfaces tethered to the human body [Iwata]. FEELEX consists

of a malleable surface deformed by an array of 6 x 6 linear actuators. A top-down projector is
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used to create visual feedback on the surface. Through embedded pressure sensors the system

reacts to the user's push. An example application renders a moving creature reacting to touch

input of a single user. A second version, FEELEX 2 decreases the spacing between the

actuators for use as a medical palpation simulation device. While FEELEX displays are able to

sense user input through touch, they do not allow additional input techniques.

Digital Clay is a research initiative at Georgia Tech investigating various shape rendering

devices and their application as human computer interfaces. One of the proposed mechanisms

is a 2.5D shape display [Rossignac], with applications proposed for 3D modeling by sculpting

with fingers. A functional prototype with a 5 x 5 array of hydraulically driven actuators was

developed. Potential user interactions for the system were investigated with PHANTOM haptic

devices [Phantom]. The proposed interactions are not evaluated on an actual 2.5D shape

display, as they would require resolution and sensing capabilities that have not yet been

achieved.

Fig. 10 - 2.5D Shape Displays: FEELEX 1 & 2 and Lumen

Lumen by Poupyrev et al. [Lumen] is a shape rendering apparatus driven by a 13 x 13 nitinol

actuator array, similar to the apparatus of Pop-Up [Popup]. Graphic overlay is integrated into the

device by lighting each actuated pin with a monochrome LED. Applications for Lumen include

animated shapes, reconfigurable tangible user interface elements, and connected shapes for

remote presence. The input mode is similar to that of a touch screen with tactile feedback, thus

it does not explore additional interactions, beyond direct touch.

The XenoVision Mark Ill Dynamic Sand Table trades output speed for a simplified actuation

mechanism, which enables a high resolution through 7000 actuators [Xenotran]. As rendering a
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complete shipe on the rrent emltkes more than s6econ annottea ith

the, phiysical'shape in reall-time. -4.

Another beautiful example of how a shape display can be an organic part of architecture was

displayed at the Hungarian pavilion in the World Expo of 2010 in Shanghai. Samu and Nagy

constructed a ceiling consisting of a grid of actuated wooden pillars that a mechanical system

can move closer or farther away from the visitors [Expol 0].

Fig. 11 - Hungarian Pavilion at the 2010 Expo in Shanghai

Amorphous'shape displays
Other shape displays don't use the grid structure that characterizes 2.5D shape displays. These

projects implement unique, project specific arrangement of actuators that can be of fixed

position or dynamically arranged.
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The Volflex project [Volflex] by Iwata et al. consists of an array of computer controlled valves

connected to an air balloon that can be computationally inflated and deflated. Each valve is

equipped with a pressure sensor to allow user input through squeezing the balloons. The

balloons dynamically arrange themselves, without having a fixed location.

Fig. 12 - Amorphous Shape Displays: Volflex and Surf lex

Coelho et al, implemented the Surflex [Surflex] project, which is a programmable surface,

controlled by strips of shape memory alloy, which can bend the surface along the sawn lines.

Although it actuates a surface, similarly to 2.5D shape displays it does it though the woven lines

along the surface, instead of pins actuating points on the surface.

By these categories, Amphorm can be classified as an amorphous shape display.

Gestural interaction
The primary interaction technique that Amphorm responds to is gestural manipulation that I will

detail in the Interaction section of Chapter V. In this section I will review projects that support

some of the design decision I have made when implementing Amphorm.

Wilson et al demonstrated a robust computer-vision algorithm to detect freehand pinching

gestures [Wilson]. They argue that when we pick up an object we very often pinch it to get a

good grip on it - thus the pinching gesture is an intuitive gesture for selecting a point at a given

spatial coordinate. They demonstrate how this gesture can be effectively applied to applications

where zooming, translating and rotating digital content is necessary. The group has

demonstrated that the same gesture works effectively for large screens [Benko] and for touch

interactive tabletops [Hilliges].
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Grossman et al demonstrated that the pinching gesture is not only applicable to screen based

applications, but for volumetric displays as well. He details applications involving a single user

[Grossmanl] and for collaborative work [Grossman2], both implementing the pinch gesture as

the primary freehand gesture for selection.

Fig. 13 - Gestural interaction in Spatial Operating Environments: Oblong's g-speak system and

Microsoft Research's LightScape

The Tangible Media Group also implemented a gestural language system atop of Oblong's G-

speak system [Oblong] called G-stalt [Zigelbaum]. The G-stalt spatial operating environment

(SOE) implemented a library of gestures to interact with volumetric data, using a large screen.

The primary gestures in the system used a pinching as the selecting gesture for modalities, in

particular moving through space involved consecutive pinching, while the pinched hand was

moved in the desired direction of movement in the digital world.

Digital form giving

Moving into the digital realm, form giving has been transforming in the past two decades. Today

the majority of digital form giving is still achieved through 2D CAD modeling software,

regardless that the modeled environment is 3D. With the advancements of augmented reality

engines and tracking technologies a number of projects emerged in the field of 3D embodied

digital form giving. Since Amphorm is a dual-citizen between the physical and digital realm, a

short overview follows of the related projects.

Schkolne in his PhD dissertation and through one of his excellent talks [Schkolne] introduces his

research about handmade digital shapes. Through his projects involving hand and head

tracking and tangible tools he demonstrates how these tools help us express our creative

intents more efficiently. One of his projects incorporates kitchen tongs as a tool to select
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precisely a point in space, while utilizing the human hand's 6 degrees of freedom (DOF)

navigation power to alter the digital model's topology.

The Sculpting by Physical Proxy project by Sheng et al [Sheng], demonstrates how a simple

tangible interface (a sponge) can aid us when sculpting an object. The project uses a motion

tracking system that interprets the user's hand gestures and the position and shape deformation

of the sponge. With these inputs they implemented a computer aided design (CAD) application,

where the user sculpts virtual objects through deforming the physical proxy (the sponge).

Fig. 14 - T(ether), a collaborative system to interact with volumetric data using gestures

Lastly, one of my earlier project called T(ether), explores how we can give form to virtual objects

in a collaborative environment, using a motion-capture system with tablets and gloves. The

tablet device acts as a window to virtual reality affording users a perspective view of three-

dimensional data through tracking of head position and orientation. T(ether) creates a 1:1

mapping between real and virtual coordinate space allowing immersive exploration of the joint

domain. The system creates a shared workspace in which co-located or remote users can

collaborate in both the real and virtual worlds. Users can interact with volumetric data through

the capacitive touch screen and freehand gestures. If the user's hand is behind the screen he

can directly interact with the data, by pinching his fingers close to the virtual object. Once the

user applied the pinch gesture the object moves with his hand (utilizing the 6-DOF property of

our wrist, as discussed in Schkolne's project). Related to the discussion of digital form giving we

implemented an application, where the user was able to manipulate meshes by the same

freehand gestures, rapidly and intuitively in our digital spatial environment.
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CHAPTER V

A Perceptually Equivalent
Interface: Amphorm

"Ah, he comes excited.
Sir, my need is sore.
Spirits that I've cited
My commands ignore."

(The Sorcerer's Apprentice - J. W. von Goethe)
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In order to test interaction techniques with dynamic materials I constructed a perceptually

equivalent interface, which I named Amphorm. The name originates from the Greek word

Aptpopa<; (Amphora), which is vase-shaped container, widely used to store and carry liquids

and porous substances in the classical antiquity. In the history of form giving Amphorae were

one of the first objects that propagated into every household and were customized not only

through their shape, but also through their decoration that featured episodes from Greek and

Roman mythology.

Amphorm (Amphora + Form) is a kinetic sculpture that resembles a vase that can

computationally alter its shape.

Many prior shape displays construct a system, where the shape of the interface can be

transformed, thus they achieve the first pillar of the "transform/inform/conform" taxonomy,

detailed in Chapter Ill. Some of them [Lumen] respond to user input, but interaction is limited to

direct manipulation. Uniquely the Recompose interface responds to gestures from the user, but

its grid structure does not resemble a natural surface, thus it becomes hard to evaluate the

success of user interactions.

Rationale
Throughout the process of creating Amphorm, I considered a handful of design criteria:

1. Amphorm has to be identified as familiar object,

2. The shape space should be maximized through the transformation,

3. The shape changing effect for each individual element has to be distinguishable for the

user to achieve a mental connection between interaction and transformation.

Amphorm is a familiar object for humans: it resembles a vase that has co-existed with humans

for thousands of years. Its shape is defined by 5 elements stacked vertically that can change

their radius dynamically.] maximized the shape space by designing each joint so the ratio of

expanded versus contracted radius is maximized. From the user's perspective every joint is

identifiable beneath the skin of the interface, by the vertical height within the interface.

44



Mechanical Construction

A perceptually equivalent prototype

Amphorm is a perceptually equivalent prototype for Radical Atoms: it can transform its shape

through the 5 joints, it conforms to the users proximity and it informs the user of its

transformational capabilities through the digital shadow beneath the interface.

The skeleton

The joints I designed are inspired by the Hoberman sphere [Hoberman]. The planar joint (shown

on Fig. 15) consists of 16 scissor joints, which I designed and fabricated, from Aluminium. Each

scissor joint consists of 2 elements. The individual element and the scissor joints are fastened

together by a shoulder screw.

Fig. 15 - The planar joints in their contracted and expanded state

After assembling the planar joint two servos [SG501 0] were fastened to two opposing points on

the planar element - this construction allows for robust actuation per section. Each servo can be

actuated in 180 degrees using PWM (Pulse Width Modulation) signals. The servos are coupled

by a custom Aluminium linkage I have designed, in order to move the joint between the

minimum and maximum expansions. The 5 assembled planar joints were fastened to two metal

rods, allowing for easily adjustable positioning of the joints vertically.
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Fig. 16 - Planar joint designs

The skin
Amphorm is an object, which allows users to give form to its shape. In the natural world shape is

typically a material that we perceive to be continuous. In order to give the appearance that the

overall shape of Amphorm is changing, (not the radii of a limited number of control points) I

designed two prototype skins that cover the planar elements.

The material selection reflects the two design criteria: the material has to be flexible, so it can

interpolate (stretch) between two points of the extremes, as well as it has to distribute its

material evenly, so the skin can follow the skeleton "naturally".

Either one of these criteria can be fulfilled easily - there are a number of materials that can

stretch longitudinally and others that can stretch evenly. However the combination of these two

can be achieved the easiest way by combining two materials to create a composite. The two

materials I have chosen were the Ecoflex 0030 from Smooth-On Inc., a platinum-catalyzed

silicone that is able to elongate itself up to 800% of its cured length and a pair of ordinary

women tights, which are very tightly knitted, but would rip without the strength of the silicone.
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Fig. 17 - Silicone skin prototype for Amphorm

Fig. 18 shows the two prototype skins, one from pure silicone, while the other one from a

composite, which is a silicone coated tights. In Chapter VI I will expand further on the design

rationale between separating the skeleton-muscle-skin structure.

The reflection

The reflection refers to the digital reflection that lives beneath Amphorm. The reflection lives

behind a half-silvered mirror, in an LCD screen. The screen is mounted inside the stand of

Amphorm. All the electronics and cabling are strictly confined to the space directly beneath

Amphorm, in order to prevent occlusions from the visual feedback.

Visual feedback
Immediate feedback to the user is provided by strips of RGB LEDs (Red-Green-Blue Light

Emitting Diodes) [LED] mounted circularly below each of the 5 actuated planar kinetic elements.

Whoever reads this line is entitled to a big chocolate-chip cOOkie, please email me directly if you

want to claim it. These stripes provide immediate visual user feedback of which of the planar

elements are going to be affected by their gestures, as well as the state of the interaction they

are in.
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Fig. 18 - Skin prototyping process

Optical sensing
In order to sense user input, I implemented a computer vision algorithm utilizing the Microsoft

Kinect depth camera. The Kinect is mounted directly above Amphorm in order to sense user

input from every direction.

The computer vision algorithm was implemented using the openCV [openCV] library wrapper for

the openFrameWorks [OF] environment. The algorithm recognizes hand gestures and performs

head tracking in order to correct the perspective of the digital reflection for user feedback.

The engaging gesture (described in detail in the Interaction section of this chapter) is the

pinching gesture, first implemented by Wilson et al [Wilson]. Detection of this gesture is

achieved by finding a "contour in a contour" in the blob array returned by the openCV library.

Head tracking
In order to correct the perspective when rendering the digital reflection of Amphorm I

implemented an algorithm that tracks the head position of the user. The head's position is

calculated by determining the highest point in the depth buffer in proximity of the entering hand.

The algorithm successively thresholds height cross-sections in order to provide head tracking
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Depth camera

Fig. 19 - System architecture diagram
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for users with varying heights. Once the position of the head is known depending on the

proximity to the Amphorm the digital reflection toggles. If the user's head is close enough to see

the refection beneath Amphorm a digital reflection renders beneath, from the user's perspective.

Side Top

Shape space
animation

I I

Fig. 20 - Digital reflection beneath Amphorm

System integration
The control software of the system runs on an Apple Mac Mini. All the joints are moved by

servos directly connected to an Arduino [Arduino] that receives commands over the Serial port.

An internal PID (Proportional Integral Derivative) control system running on the Arduino board

ensures that the control signal actuates the servos to the correct position.

Similarly the LED strips described above are all connected to a second Arduino, through an

array of MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor). The brightness of the

LEDs is controlled by the output of a similar PID loop as in the case of the servo control unit.

The control loop adjusts the PWM signal to each of the LED stripes dynamically, while the loop

itself receives the control signal over serial port from the central unit of the Mac Mini.

The centralized logic for Amphorm is written in C++ using openFrameWorks [OF]. The

application runs four threaded functions:

" Serial communication with the servos,

" Serial communication with the LEDs,
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" Serial communication with the Depth camera,

" Main application logic.

By separating the threads the frame-rate of the application logic and rendering is not limited by

blocking events in serial communication with peripheral devices. The digital reflection of

Amphorm is rendered on an LCD screen using the openGL [openGL] C++ library.

The computer vision library I used in this project is the OF wrapper of the openCV C++ library.

The algorithm looks for the user's hand and head. The flowchart in Appendix A describes the

states machine logic of the algorithm.

Interaction

Amphorm is an ambient/calm interface [Ambient, Weiser] in the sense that it lives in the users

environment and only responds when the user engages it. Its state is equivalent to its shape,

thus user interactions manipulate its shape only.

User interaction is triggered through the proximity of the user and by the user's hand gestures.

Since the actuation element was chosen to be a servo, which has a closed loop internal PID

control, Amphorm does not respond to direct manipulation.

The following lists interaction scenarios that I have designed for Amphorm.

User Greeting - "Hello world"

Amphorm resembles a vase, thus it is a static shape until a user interacts with it. Earlier in

Chapter Il1, I expanded on how shape displays should possess three fundamental properties for

user interactions (Transform, Inform, Conform). Greeting of a user drives the "inform" pillar of

this trichotomy. If the user enters the proximity of the interface, Amphorm gently exhibits a

motion that creates the perception that the interface is breathing. This greeting motion is

important for the user to identify that this interface is one that is able to change its shape.

Today Amphorm is one of the very few interfaces that are able to do this, but in the future we

expect many interfaces to be capable of this behavior. When designing Amphorm I was

focusing on a problem that may arise from having many of these interfaces next to each other:

how do we know which objects we can interact with?
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Raw image (left) shows Amphorm and surrounding objects that are thresholded out by height
from the tracking image (right)

User enters the scene and selects a frustrum. The tracking image (right) shows the recognized blobs
of which one was recognized to be hand.

The pinch gesture is recognized by looking for a "blob in a blob" as shown on the both figures.

Fig. 21 - Amphorm's computer vision detailed
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Infinite freedom is no freedom at all. If today somebody could walk into Sutherland's Ultimate

display [Sutherland] he will not want to interact with the entire room all at once - that would

create ambiguity of selection.

Humans have evolved to recognize objects rapidly: we can identify objects even though their

color, texture or even through their form. One of the most acknowledge theories related to

human object recognition is Biederman's theory called Recognition-by-components

[Biederman], which derives that we identify objects by identifying their parts and recognizing the

relationship between those components.

Returning to our friend in the Ultimate display: we need to help him navigate through this

environment, which is composed of objects that can change their shape. A solution that I

implemented through Amphorm was a welcome gesture from the interface's side informing the

user that this object is capable of transformation. Once the "hello world" gesture is over the

shape returns to its original shape. Ideally in the future every object will "introduce" itself to a

particular user only once, thus the user and the object will co-evolve next to each other. I will

expand on co-evolution in the future work section of chapter VII.

Selection

Consider a room with three Amphorms resting on a shelf next to each other. Proximity may be

an ambiguous term in this scenario and selection gestures may be reflected on each one of the

objects, confusing the user, who's intent was to interact with only one of the vases. To resolve

this ambiguity engagement has to be connected directly to how humans project their

engagement: by turning their head and moving their eyes. Ideally, the Ultimate room will have

sensing capabilities that will track the user's head and pupil position. Fused with proximity to the

object the room will be able to derive which object the user is intended to interact with.

Since there is only one Amphorm connected to my perceptually equivalent prototype

engagement is only measured through proximity of the interface. If the user is close enough he

will be able to manipulate the shape of Amphorm.

The selection gesture is a passive one: the only interaction the user needs to do is to raise his

hand in proximity of the object. Once the hand is in proximity of Amphorm selection occurs

automatically - as the user moves his hand up and down vertically he receives visual feedback
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through the LEDs as he switches between the planar actuation elements. The brightness of the

LEDs maps to the distance from their hand to the skin of Amphorm - as they move their hand

closer the LEDs get brighter.

If the user uses both hands for selection the algorithm averages the hand height of the two

hands, though preliminary user studies revealed that the majority of the users intuitively uses

only one hand for selection.

Gestural manipulation

The pinch

Once the user has selected the planar kinetic element he wants to control, manipulation is

enabled by the user's pinch gesture. The pinch gesture has been used widely, since Wilson et

al [Wilson] started using it in one of the early project's featuring the Microsoft Kinect's depth

sensing capabilities. The pinch gesture is powerful, since it relates to a very widely used human

gesture of picking up a single object, while the detection of the gesture through computer vision

algorithms is rather simple and computationally efficient.

Once the user applies the pinch gesture, the state machine of the application records the

location of the originating pinch point to determine subsequent manipulation distances. The user

actuates the selected joint by moving his hand toward or away from Amphorm, which contracts

or expands the joint, respectively. During the pinch gesture selection is locked: even though the

user may shift out of the selection plane of the joint, manipulation will affect only the originally

selected joint. I created a second modality to manipulate multiple elements through one gesture.

Defining the contour - Carve by example

An earlier project from the Tangible Media Group called Topobo [Topobo] showcased how

powerful it is when interfaces can be programmed by demonstration. The project shows how a

robot can be taught how to walk without writing a single line of code, instead all the joints record

their motion that can be played back.

Inspired by this project I created a second gesture: if the user pinches above Amphorm the

system interprets the following motion as the contour of the Amphorm. The rationale behind

pinching above the object is that "above the object" is not connected to any of the planar

elements, but rather maps to a global operation, affecting all the joints. After pinching above the

54



object the user engages with all of the joints and as the user moves his hand along the vertical

axis of Amphorm the joints "copy" the motion as shown on Fig. 22.
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Fig. 22 - Carve by example interaction

GUI

The gestures described above allow users to manipulate the shape of Amphorm in the physical

world directly. Gestural interaction performs well for crude, but rapid and expansive form giving,

but is not favorable for precise alteration of the shape, unless precise visual feedback is

provided through a GUI that is collocated with the manipulation locus, similarly to the T(ether)

project [Tether].

Since visual feedback for manipulation is provided by only the digital reflection below the

surface, I implemented a purely GUI based approach, which enables users to precisely alter the

radii of joints individually.

I implemented the GUI depicted in Fig. 23 on a tablet device [iPad], using OF. The left side of

the application shows a dynamically rendered digital model using openGL, while the left side

exposes the control points of the contour of Amphorm that control both the physical and the

digital representation of Amphorm.
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Fig. 23 - GUI allowing precise, individual manipulation of joints

Upon touching any of the control points, indicated by circles, two arrows appear to indicate the

directions the control point can be moved. As the control point gets closer to the extremes, the

arrow toward the extreme fades away, indicating the maximum/minimum radius.

Many of the users throughout the preliminary user study kept their gaze on the physical model,
while manipulating using the GUI. Observing this behavior, I made the connection between the

physical and the digital model more prominent: when a user starts manipulating a joint, the

LEDs light up on the physical joint, as well as on the digital model on the tablet app.

The synchronization works both ways: if the user manipulates the digital control points, the

physical model updates. If the user engages through gestural manipulation with Amphorm, the

digital model and the GUI control points update as well.
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Fig. 24 - The synchronized physical and digital model

The GUI based interaction is an important corner-stone of the project: it exposes the

synchronicity between the physical and the digital model that will be extremely important in a

future, where every "controllable" surface/material will have a digital model that is kept in

synchronization with the physical entity.

Digital reflection

Let's jump back to our friend in the Ultimate room. Assuming that the room has the capabilities

to recognize which object he wishes to engage with, he is in proximity of it and tries to

manipulate the object. Even if he knows the gestural language that the object responds to he

has no feedback of the shape space (the set of achievable shapes for the interface).

One solution to this ambiguity of manipulation would be to provide real-time visual feedback

through the manipulation of how far the object may reach in the currently manipulated

dimension. In the future this may be resolved by projecting visual feedback straight into the

cornea of the user [Parviz] or by wearing less attractive pair of glasses [Piekarski] or holding a

display in the hand [Tsang].
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Ambiguity of shape space Ambiguity of manipulation

Fig. 25 - Ambiguity in the Ultimate room

Ken Perlin coined the term "Eccescopy" [Perlin] to describe his vision of a future, where digital

information is ubiquitously present through a global virtual world that everyone participates in,

utilizing a device that does not occlude natural human-to-human interaction. Regardless of what

device will ultimately fulfill this vision, the important thought is that collaborative systems that

use augmented reality should not block the natural communication channels between humans.

Unfortunately today the technology for unobtrusive viewing of virtual reality does not exist.

Amphorm uses a digital reflection through a display that is situated beneath Amphorm, behind a

half-silvered mirror. Until the user is in close proximity of the interface with his hand in selection

mode, the display is off and the user only sees her reflection in the mirror. Once she engages

with Amphorm through the selection gesture the display shows visual feedback aiding the

transformation process. The visual feedback consists of an animation that iterates between the

extremities of deformation of the selected planar kinetic element. As the user selects different

elements, the animation shows the various outcomes of different transformations.
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The rationale for the digital reflection is to inform the user of how the shape space can be

affected through the selected point of control. Although in this project the number of

customizable joints is limited to 5, the logical steps involved creating the digital reflection scales

up to any number of joints, since the transformation at any selected point is reduced into 1

degree of freedom.

If the user starts manipulating the selected element, the digital reflection switches to a real-time

feedback consisting of three concentric circles centered around Amphorm: the minimum radius

for the joint, the current radius of the joint and the maximum radius of the joint. Through these

graphics the user understands the extent of control he has over the given element.
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Material Design for Shape
Displays
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With the advancement of actuation technologies a number of projects have emerged in the

space of shape displays, leveraging integrated arrays of actuators to alter the shape of an

artifact. Most of these interfaces arrange the actuators in an ordered array or grid to decrease

the complexity of the setup. Currently there are two types of configurations: one with only

geometric pins as the observed display element [Lumen] and one with a passive skin on top of

the actuators, which serves to interpolate heights between actuator elements [Recompose,

Feelex, Volflex]. These current approaches in system design support the construction of the

interface, but decreases the natural appeal of the shape output. In this chapter I will outline a

system design guideline to help future projects approach designing shape displays, through

identifying the key components of shape actuation and how these components work together as

a material system.

Shape displays communicate to the user primarily through their shape, by altering their

affordance dynamically. Recently we outlined in our paper [RA] how future shape changing

materials will take a homogeneous approach to shape changing: these interfaces will be made

out of one material that can internally change its structure on an atomic scale. However, until

the technological advancements reach that level we have to take the heterogeneous approach,
in which actuation and shape output are separated parts of the artifact. We call these interfaces

perceptually equivalent to Radical Atoms because they are changing the shape of an object

dynamically, but the achievable "shape space" (versatility of their shape rendering) is limited

and bespoke to a specific scenario.

Even though it may take another 100 years to implement atomic-scale restructuring, we can

explore a more intelligent approach to controlling points on a surface, using actuators and a

variety of materials. I propose an approach that is inspired by anatomy. Instead of converting

points of active control to a changing surface and using a passive material cover, we use a

three-tier system, where each tier focuses on a different role.

Skeleton-muscle-skin material system

The first tier is called the skeleton; its function is to mediate the changes between the

synchronized digital model and the surface by converting digital signals to mechanical actuation.

Typically one would use pre-made actuator arrays that are rigid. The actuator choice

characterizes achievable shape space (the shapes that can be displayed on the interface), thus

in the design process this has to be defined first.
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Fig. 26 - The Three tier Skeleton-Muscle-Skin system

The second tier is called the muscle; its purpose is to mediate between the rigid actuation and
the soft skin. In order to support the achievable shapes it's not a full continuous section, rather a
series of discrete flexible connections that mechanically tie the points of actuation on the
skeleton with the materials that the skin is made out of.

The third tier is the skin; the material that communicates visually to the user. Since the muscle
mediates between the skin and the skeleton the skin is decoupled from the actuation to ensure
dynamic movements, responding to the actuation. The material is the softest of the three tiers
and passively follows the muscle to "render" the shape.

Although this trichotomy splits the artifact into three separate layers, assembled they create a
material system [Oxman] that is suited to render a defined shape space naturally. In this context
"naturally" may refer to the aesthetic appearance of the rendered shape being closer to a
continuous surface than to a material stretched between points of control.

Material selection
Until we get to the ultimate material that can fulfill all of the proposed functionality, we need to
select materials for every individual application we design. Following the outlined three tiers, in
continuing future work I would like to compile a library of material selections that is similar to the
Ashby-charts [Ashby]. Criteria for material selection thus will be directly coupled with interaction
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design constraints, thus if the interaction technique is selected the material trio for the skeleton-

muscle-skin trio will be yielded.
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While a formal user study has not been completed on Amphorm, the interaction techniques has
been observed through the 2012 Spring Sponsor Meeting of the Media Lab from April 2 3 rd- 2 5 th

2012 which received more than 500 people over the course of the event.

During the event users approached Amphorm, where they were given a very short introduction
to the project, while showing the pinch gesture for individual joint manipulation as well as
multiple joint manipulation (carve-by-example), through the contour definition gesture. After
instructing the users about the gestures for manipulation and for selection they were introduced
to the tablet interface and they were shown how to manipulate the shape of Amphorm through
the GUI.

Fig. 27 - Amphorm at the MIT Media Lab's Sponsor

Minsky)

Meeting, April 2 4 th 2012 (User: Marvin

After the users have received the instructions, they were left alone to explore Amphorm.
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User observation
After trying out the interaction techniques most of the participants used the contour defining
gesture to define the shape "with a broad brush strokes". They said that the gesture was "very
immediate" and "communicated intent in a natural way", but it was "hard to correct and be
precise", when using the single manipulation gesture. Most of the users tried to carve a rough
shapes through the gestures to give it the desired look and then used the higher precision GUI
based interaction to refine the final form of Amphorm.

Most of the users reported that the pinch gesture was very easy to learn, but they would not
have thought of using it, if I would not have instructed them. Although the pinching is one of the
most commonly used gestures, different users showed the gesture in different ways. Fig. 28
depicts the two most common ways that users pinched. Notice that the pinch on the left picture
exposes the background, while the one on the right does not.

Fig. 28 - Variations on a pinch

This slight difference does not seem relevant when we gesture to another human, but the initial

algorithm I implemented for gesture recognition was using the see-through background of the

gesture to recognize a pinch. After this initial user observation the tracking algorithm was
improved, to slice the depth buffer of the camera starting from the top point of the hand, in order
to recognize a pinch even if fingers are occluding the background.
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Most of the users reported that the shadow simulation "could be very helpful" in case of a higher

precision model, but they would not have understood how it works if not instructed before.

Additionally the visualization became distracting when multiple people started interacting with

Amphorm, since it was jumping between animations back and forth between the elements

selected by the different users.

For this demonstration Amphorm did not have its skin on, because of problems with servo

actuation. This gave a chance to evaluate if users can visually interpolate between the joints to

recognize the intended shape of Amphorm. The majority of the users were able to infer the

shape, but they missed the skin: "I want to see the chassis, not the motor". Ultimately it was

clear that a skin is not necessary for users to give form to Amphorm, but it is essential to

evaluate the aesthetic product of the form giving process.

One of the users suggested that the mechanism would be a great musical instrument, where

strings would make up the skin of Amphorm and as the user would changed the radius of each

planar element the pitch of the strings would change.

Throughout the demonstration a handful of users expressed a recurring remark: their desire to

own objects that can change their shape over time, responding to user input or automatically.

Each of these used the term "own", which suggests that they are ready to allow these objects to

enter their home.

To summarize: users were able to use Amphorm in the intended operation mode after a short

explanation. Most users reported the gestures to be easy to learn, but they would not be able to

discover it. Almost all the users said that the skin is not a necessity for operation, but they are

interested in the final form, not the exposed joints.
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CHAPTER Vill

Discussion and Future
Directions

"Predictions can be very difficult, especially about the future."

(Niels Bohr)
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I am deeply interested in the way humans interact with shapes. We have thousands of years of

history that is paved by the evolution of tools and processes that helped us shape our

environment the way we wanted it to look and feel. With recent successes in materials sciences

and nanotechnology we are getting close to a point in time, when we will have materials that

can change their shape dynamically in sync with a digital model.

The thesis dives into a practical problem that will arise as soon as this material will be available:

how can we interact with a material that can change its shape freely?

In this thesis I described Amphorm, an interface that is an early prototype of the dynamic

interfaces I outlined. I started off by deducing the design rationale of the interface, stating why I
think it is important to start from the interaction design viewpoint.

A detailed explanation followed about Radical Atoms - our vision of the highly malleable

material that can change its shape rapidly, through different scales. I listed design criteria that

we need to take into consideration, when designing these interfaces, namely the three pillars of

Conform-Inform-Transform.

I surveyed an array of projects that are closely related to my work currently and assessed that

with the current technology at hand we do not have the capabilities to build an interface that can

transform into arbitrary shapes. I proposed a viable direction to start experimenting with

interaction techniques with Radical Atoms, which I named perceptually equivalent interfaces.

To backup my claim of perceptually equivalent interfaces, I implemented an example, which I
named Amphorm, which serves as the core of my thesis. I expanded in detail about the design

rationale behind the interface and the decisions I made during the construction of it.

When designing the skeleton and the skin of my interface I faced interesting decisions that I
encapsulated in the discussion about the skeleton-muscle-skin three-tier system.

Most importantly this is an interaction design centered thesis: I gave detailed description about

the interaction modalities of Amphorm and how I think it can be generalized to future shape
displays that we may see in the future.
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Future Directions
I discussed in depth interaction techniques with Amphorm and how it relates to the vision of

Radical Atoms. However Amphorm is a very limited example and being in control of matter will

pose further problems that I will address in this section.

Scale-free transformation
Amphorm is an example of an interface, which can transform its shape on scale that relates to

human hand size, thus making the shape very accessible for transformation. However if we

consider the Ultimate room example once more we may want to rearrange on every imaginable

scale starting from the crystal structure of solids to the architectural surfaces of the room. It

seems obvious that these scales cannot be manipulated with the same interface, since nano-

scale changes affect physical properties, while alterations made at a higher scale will change
the structural relations between elements.

Even worse different users will expect different interfaces. A scientist may wish to alter the

cellular structure of a region, to test whether graphene or graphane is a better conductor under

varying circumstances, while a child may want to change the color of a flower, depending on

which hour of the day it is.

Let's assume there are different application modalities depending on what scale you want to

work at. Where do you switch context? Where is the boundary between changes in material

property and structural properties?

Coevolution
In a world, where dynamic materials exist we need understand, how dynamic objects work.

Thierry Bardini in his book called "Bootstrapping" [Bardini] explains how coevolution of humans

and their tools is a balancing act between human needs and tools that are invented to solve
those needs. The book's reasoning reaches back to Maurice-Merleau Ponty's thinking about

intentionality [Ponty] - how we respond to objects and how we learn from them through
"preconscious aspects", which is very similar to Gibson's way of defining affordances [Gibson].

But when objects will be able to shift their shape dynamically, the concept of affordances and
thus learning from objects in the Bardini-sense breaks down.

In order to learn from objects, they have to evolve with users. Adaptability is not enough in this

case anymore, since the user has to be informed of the interaction, before the interaction
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actually begins (and adaptability by definition follows the interaction). In my opinion coevolution
means that objects will evolve to their functions gradually. E.g. "learning by example" is one of
the most powerful machine learning algorithms that for example the Topobo project has

demonstrated.

Role Division of Interaction with Synchronized Entities
Amphorm demonstrated how the physical and the digital model of and object can be
synchronized and manipulated in both worlds. Interaction in the physical world with dual-

citizens, like Amphorm without collocated visual feedback like HMDs (Head Mounted Displays),
Goggles or a Spatially Aware Displays [Fitzmaurice] can be cumbersome and maybe even more

importantly the precision is limited.

Because of the limitation in precision, gestures and tangible tools are great at providing wide

brush strokes for form-giving, similarly, how clay is manipulated first roughly, by first gathering

lumps of clay that consist for the mass of an object and than shaping that mass with ever
increasing precision, until the desired shape has been achieved. Interactions in the physical
space are very well suited for the first part of this process, where rapid, and expansive

iterations change large part of the model. The digital realm provides a great platform for
the more "cold minded" part of the form giving process, where little, precise alterations on a
very defined set of control points are needed.
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CHAPTER IX

Conclusion
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My thesis work presented Amphorm: a dual-citizen of the physical and the virtual worlds, having

representations in both, which are constantly synchronized with each other. The project

explored the greater vision of Radical Atoms - a highly malleable computationally alterable

material that stays always in synchronization with a digital model - in practice, by implementing

a perceptually equivalent entity to this hypothetical material. Amphorm resembles a familiar

object: a vase that humans have been shaping for thousands of years. I implemented and

tested a number of interaction techniques to give form to Amphorm. In the physical world, form

giving was achieved through free hand gestures, while in the digital world a tablet device

provided access to the digital model. The project explored how the role division of interaction

breaks down between digital and physical interaction modalities. Although a formal user study

has not been completed, the project has been demonstrated at an event, where hundreds of

users have interacted with Amphorm, providing positive feedback. In order to present true

shape output I designed and casted two skin prototypes that interpolate between the unique

kinetic joints I have designed and constructed to change the radius of Amphorm's cylindrical

structure. Based on the current design, I proposed a three-tier system consisting of the

skeleton, the muscle and the skin for future shape display design processes.

The materials described by the Radical Atoms vision, do not exist, yet. These materials will

redefine the connection between humans and materials, since we will be able to control their

physical properties dynamically, through their digital representations. In order to give form to

these materials, we will need a language that will be part physical and part digital. I believe that

even without the existence of the aforementioned materials, this language can be discovered,
which will provide humans unprecedented freedom to alter their environment dynamically.
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Appendix A - Flowchart of the State machine
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Appendix B - From Graphical User Interfaces to Radical Atoms

GU PAINTED
GUIBITS

TANGIBLE
TUIBITS RADiCAL ATOMS

A Graphical User Interfaces only let A Tangible User Interface is like an ice- Radical Atoms is our vision for the future of interaction
users see digital information through a berg: there is a portion of the digital that with hypothetical dynamic materials, in which all digital

screen, as if looking through a surface emerges beyond the surface of the water - information has physical manifestation so that we can
of the water. We interact with the into the physical realm - that acts as physi- interact directly with it - as if the iceberg had risen from
forms below through remote controls cal manifestations of computation, allowing the depths to reveal its sunken mass.
such as a mouse, a keyboard or a us to directly interact with the 'tip of the
touch screen. iceberg.'
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