
Optical Investigation of Suspended Single

Wall Carbon Nanotubes

by

Dávid Lakatos

A thesis submitted in partial fulfillment for the

degree of Bachelor of Science

in the

Budapest University of Technology and Economics

Department of Broadband Infocommunications and Electromagnetic Theory

Group of Electromagnetic Theory

and

Delft University of Technology

Department of Nanosciences

Quantum Transport Group

December 2009

file:david@lakatosdavid.hu
http://evt.bme.hu/
http://www.tudelft.nl/live/pagina.jsp?id=01fd1509-de94-4c64-85a3-3c36aab35e3f

Declaration of Authorship

I, David Lakatos, declare that this thesis titled, ‘Optical investigation of suspended carbon

nanotubes’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

Signed:

Date:

i

Contents

Declaration of Authorship i

List of Figures iii

Abbreviations iv

1 Introduction 1

2 Background 3
2.1 Single wall carbon nanotubes . 3

2.1.1 Atomic structure . 3
2.1.2 Electronic structure . 6
2.1.3 Optical properties . 10

2.2 Synthesis . 12
2.2.1 Sample preparation methods . 12
2.2.2 Samples used in the experiments . 13

3 Experimental design 16
3.1 Equipment . 16

3.1.1 Confocal microscope setup . 16
3.1.2 Spectrometer . 18
3.1.3 Lasers . 21
3.1.4 Motors . 21
3.1.5 Power meter . 21

3.2 Description of the measurement procedures . 22
3.3 PLE mapping automatization . 22

3.3.1 Manual search and sample mapping . 23

4 Results 25
4.1 Locating SWCNTs . 25
4.2 The aging effect of SWCNTs . 29
4.3 Sample mapping . 31
4.4 PLE mapping . 31

5 Conclusion and Outlook 35
5.1 Conclusion and outlook . 35

ii

Contents iii

A Program codes 37
A.1 RT Setup.m . 37
A.2 getbeam.m . 58
A.3 plemap.m . 64

B Graphical User Interfaces 77

C Table for assigning chiral indices 81

Bibliography 83

Acknowledgements 86

List of Figures

2.1 The three types of tubes: zigzag, armchair and chiral. 5
2.2 The chiral and translation vectors of CNTs . 5
2.3 Unit vectors in real (a) and reciprocal space (b) 7
2.4 The periodic boundary condition using the ZF approximation 8
2.5 Reciprocal lattice of graphene with energy contour plot of the bonding band and

allowed k-lines for a metallic (5,5) and a semiconducting (10,0) nanotube 9
2.6 Electronic band structure and Density of states for a (4,2) nanotube 9
2.8 Density of states with bandgap renormalization 11
2.7 E22 (excitation) and E11 (emission) energies . 11
2.9 Pillar spacing dependence of bridging probability of suspended SWCNTs grown

on a square-lattice pillar array. 13
2.10 Schematics of the samples from Waseda University, Tokyo 14
2.11 SEM images of the samples (Trenches and pillars region) 14
2.12 SEM image of the sample from NRC . 14

3.1 a) Schematics of the home built confocal microscope setup. b) Picture of the
confocal microscope setup mounted on a dedicated optical table. 17

3.2 Schematic of the monochromator . 18
3.3 Flowchart of the PLE automatization . 23

4.1 Measured photoluminescence of a single SWCNT 26
4.2 Photoluminescence spectrum of a nanotube with a Lorentzian-fit 27
4.3 Setup modification in order to increase the beam size 28
4.4 Beam diameter measurement from the CCD image 29
4.5 Aging effect of nanotubes . 30
4.6 Aging effect of nanotubes II. 30
4.7 Mapped samples with possible nanotubes . 32
4.8 PLE map of a (11, 6) individual nanotube . 33

B.1 GUI for the sample mapping automatization and stage control 78
B.2 GUI for the beam area calculation . 79
B.3 GUI for the PLE mapping automatization . 80

C.1 Table for assigning chiral indices to nanotubes based on their E11 and E22 energies 82

iv

Abbreviations

BZ Brillouin Zone

CCD Charge-Coupled Device

CNT Carbon-Nanotube

CVD Chemical Vapor Deposition

DLL Dynamic Link Library

GUI Graphical User Interface

IR Infra red

InGaAs Indium Gallium Arsenide

MWCNT Multi-walled Carbon Nanotube

NA Numerical Aperture

NIR Near Infrared

NRC National Research Council (Canada)

PL Photoluminescence

PLE Photoluminescence Excitation

SEM Scanning Electron Microscope

SWCNT Single Wall Carbon Nanotube

TB Tight-Binding

USB Universal Serial Bus

VHS Van Hove Singularity

ZF Zone-Folding

v

Chapter 1

Introduction

The era of microelectronics is approaching its end, because scaling down electronic device dimen-

sions is slowly reaching fundamental physical limits. In order to continue the envisioned path of

Gordon E. Moore - who predicted that the computational power of semiconductor electronics

will double, roughly every two years - a new technology has to be implemented. Nanotechnology

provides a new perspective in fabrication, in comparison with the usual top-down scheme used

in microelectronics, with the so-called bottom-up technique where nanostructures are assembled

at nearly atomic levels. Working according to this philosophy, device dimensions can be scaled

down to individual atoms.

The phenomena occurring at the nanometer scale cannot be described by classical physics

anymore, but only by quantum mechanics. When the dimensions of objects shrink down to the

nanometer scale, new properties emerge. One well-known example for this is given by graphite.

Graphite (a stacking of two-dimensional, sp2-bonded carbon layers) is known as a mechanically

soft material, which is used in pencil leads. Now, if one imagines isolating a small sheet of

a graphite monolayer (graphene) and roll it into a cylinder with a nanometric diameter, one

will obtain a nano-object with amazing mechanical (tensile strength 80 times higher than high

strength steel), thermal (better than copper) and electronic properties (completely described by

tube geometry). Such objects called carbon nanotubes (CNT) have been discovered in 1991 by

Sumio Iijima at NEC [1] and since then have led to an explosion of research activities in many

labs worldwide. Furthermore, recent studies showed very promising optical properties which

allow new applications and research in nanotube-based optoelectronics [2]. Their importance

even grew in the recent past, since in the field of quantum information processing, carbon

1

Chapter 1. Introduction 2

nanotubes are potential candidates that are able to naturally link solid state qubits used for

information processing (such as single spins), with flying qubits used to transmit quantum

information (photons) [3, 4].

The goal of my thesis is to get familiarized with carbon nanotube physics and related experimen-

tal techniques. Here the focus was put on the optical properties of single wall carbon nanotubes

(SWCNT). I studied the photoluminescence (PL) of suspended carbon nanotubes on diverse

samples. I implemented a system to facilitate the investigation of the photoluminescence ex-

citation (PLE) mapping, which helped identifying the structure of the investigated nanotubes.

Furthermore, I have come across an effect called bleaching, which corresponds to the decay of

the PL signal. Based on the available literature, we addressed reasons behind this observation.

Chapter 2

Background

Carbon nanotubes discovered in 1991 by S. Iijiama [1], are important to scientists and engineers,

because of their outstanding physical properties [5]. SWCNTs can be regarded as a sheet

of graphene (one layer of graphite is called graphene) rolled into a cylinder. Among several

nanostructures, carbon nanotubes have the smallest aspect ratio: in diameter they are only a

few nanometers wide, but their length is usually a couple of µm, although it is possible to grow

tubes that are as long as several cm [6]. Thus they are a quasi one-dimensional system, where

quantum effects play a dominant role. The electronic structure of SWCNTs, that can be derived

from the one of graphene, are unique in the sense that they are completely determined by the

tube geometry, resulting in semiconducting or metallic character [5]. Furthermore SWCNTs are

unique in the sense that they have prominent thermal [7], mechanical [7], chemical [8], electronic

[5, 9] and optical properties [2]. In the next sections, the electronic and optical properties will

be described in details.

2.1 Single wall carbon nanotubes

2.1.1 Atomic structure

The atomic number of carbon is 6 and as a group 14 element, four electrons are available to form

covalent chemical bonds. The orbital structure of carbon consists of two electrons occupying

the inner 1s shell. The other four can be arranged in 3 different ways, in other words, they can

have three different hybridizations:

3

Chapter 2. Background 4

� sp3 (4 covalent σ bonds), e.g.: diamond

� sp2 (3 covalent σ bonds and 1 Π-bond), e.g.: graphene

� sp1 (2 covalent σ bonds and 2 Π-bond)

In graphene and SWCNTs we have a sp2 hybridization. In graphene, the honeycomb lattice

builds up from three in-plane covalent σ bonds and a fourth π-bond, which is delocalised. Since

SWCNTs are made up of graphene sheets rolled up into a cylinder, the three σ bonds are

generally slightly out of plane due to the curvature and the π-bond gets delocalized along the

tube walls. These σ bonds provide SWCNTs high mechanical strength along the tube axis - it

has been measured that the Young’s modulus for SWCNTs can be 80-times higher than that of

high strength steel [10].

Now the nomenclature of nanotubes will be introduced. On Fig. 2.2, the honeycomb lattice

structure of graphene is shown. Starting from one gridpoint (one C atom) using the linear

combination of the basis vectors ~a1 and ~a2, we can build up one of the two sublattices of

graphene. By repeating this process, starting from one of the neighboring atoms of the initial

starting point, the complementary sublattice can be constructed. The chiral vector of a CNT is

the circumferential vector along which the sheet of graphene is rolled up. We can express this

chiral vector as a linear combination of the basis vectors, ~a1 and ~a2:

~C = n ~a1 + m ~a2, n,m ∈ N (2.1)

Many properties of SWCNTs can be derived from the chiral vector, therefore a comfortable

notation is used to describe them: from the equation above, the two integers n and m, which

are called chiral indices are expressed in brackets, such as (n,m).

Depending on the chiral indices one can separate SWCNTs into three main groups (see Fig. 2.1):

� if m or n = 0, the nanotube is called zigzag

� if n = m, the nanotube is called armchair

� if n 6= m the nanotube is called chiral

In real space the other important geometrical parameter of a CNT is the translational vector,

which represents the smallest vector along the tube axis, which connects two equivalent lattice

Chapter 2. Background 5

Figure 2.1: The three types of tubes: zigzag, armchair and chiral.

Figure 2.2: The chiral and translation vectors of CNTs

points. The translational vector is perpendicular to the chiral vector, and can be expressed

again only with the chiral indices:

T = t1a1 + t2a2, t1 =
2m+ n

NR
t2 = −2m+ n

NR
(2.2)

where NR is the greatest common divisor of (2m+ n) and (2n+m).

The diameter of the tube can be expressed with only the chiral indices:

Chapter 2. Background 6

dt =
|Ch|
π

=
a

π

√
n2 + nm+m2 (2.3)

where a represents the lattice constant of the honeycomb lattice (a =
√

3acc = | ~a1| = | ~a2|, where

acc is the the bond length with acc ≈ 1.42Å).

2.1.2 Electronic structure

As mentioned above, the electronic structure of a SWCNT can be derived from that of graphene.

The unit cell of graphene is a rhombus that contains two carbon atoms as shown on Fig. 2.3

(a), in the dashed area. These two atoms belong to the two complementary sublattices that

yield together the honeycomb lattice of graphene (A for sublattice A, B for sublattice B).

In the reciprocal space the corresponding BZ of graphene is similarly a honeycomb cell, as

outlined red in Fig. 2.3 (b). The reciprocal lattice vectors are obtained from the condition

~ai · ~bj = 2πδij :

~b1 = (
2π√
3a
,
2π
a

) and ~b2 = (
2π√
3a
,−2π

a
) (2.4)

Using a tight-binding (TB) model, we can calculate the electronic structure of an infinite

graphene sheet. The TB model is an approximation that only considers the interactions be-

tween neighboring atoms as perturbation and ignores the electron-electron interactions [11].

The calculations yield two wavefunctions, corresponding to the two complementary sublattices

of electrons. From these wavefunctions the dispersion relation of graphene can be calculated [8]

as later shown on Fig. 2.6 a.).

The electronic band structure is usually referenced in three high symmetry points, labeled on

Fig. 2.3 with Γ, K and M (see Fig. 2.3 and 2.6 a.)).

According to [12], the unit cell of SWCNTs, spanned by the translational and chiral vectors,

contains

N =
2(m2 +mn+ n2)

dR
(2.5)

Chapter 2. Background 7

Figure 2.3: Unit vectors in real (a) and reciprocal space (b), [Adapted from ”Unusual Prop-
erties and Structure of Carbon Nanotubes” [12]]

atoms which is much larger than that of graphene with only a two atom rhombus. This fact is

important, because the number of electrons in the unit cell corresponds to the number of bands

in the BZ, respectively.

In order to calculate the electronic structure of a SWCNT the zone-folding (ZF) approximation

is used [11]. ZF approximation utilizes the fact that a rolled up sheet of graphene has periodic

boundary conditions along the circumference of a SWCNT, thus the allowed wave vectors in

direction perpendicular to the tube axis are quantized.

The periodic boundary condition is illustrated on Fig. 2.4. Due to the tubular structure of the

SWCNT the wavefunctions at points P1 and P2 (with exactly one ~C between them) have to

satisfy the following condition:

Ψ(~x) = Ψ(~x+ ~C)

=⇒ eikx = eikx+C

⇒ eikC = 1

⇒ ~k · ~C = 2πn (2.6)

Note: the second equation is a corollary of the Bloch-theorem. Plotting these allowed vectors

for a given SWCNT onto the BZ of graphene generates a series of parallel and equidistant lines.

The distance between lines can be calculated and is found to be ∆k = 2
dt

. The length, number

Chapter 2. Background 8

and orientation of these lines depend on the chiral indices (n,m) [12]. These parallel cutting

lines decide to which group a nanotube belongs to. For example the parallel lines shown in

Fig. 2.5 are examples of allowed k modes for a metallic (5,5) armchair and a semiconducting

(10,0) zigzag, respectively. Note: the white and black plots in Fig. 2.5 are equipotential lines of

the electronic structure of graphene shown in Fig. 2.6 a).

Figure 2.4: The periodic boundary condition using the ZF approximation

The basic idea behind the zone-folding approximation is that the electronic band structure

of a specific nanotube is given by the superposition of the electronic energy bands along the

corresponding allowed k lines as shown in Fig. 2.5, i.e. a pair of conduction and valence bands

for each k line. Therefore the band structure in Fig. 2.6 b) correspond to the superposition

of the line cuts in Fig. 2.6 a). If the K point is crossed by an allowed k line, the SWCNT is

metallic, i.e the valence and the conduction band touch each other. It can be shown that a

SWCNT is metallic if the condition n−m = 3l, with l an integer, is fulfilled.

When n−m = 3 · l ± 1, the allowed k vectors do not cross the K points, making the SWCNT

semiconducting with a direct band gap. The band structure shown in Fig. 2.6 b) corresponds to

the one of a (4,2) semiconducting SWCNT. It can be calculated that a semiconducting SWCNT

has a band gap of:

Chapter 2. Background 9

Figure 2.5: Reciprocal lattice of graphene with energy contour plot of the bonding band. The
allowed k lines for SWCNTs arising from the quantization condition around the circumference:
Chk = 2πq are drawn in red. k|| and k⊥ are the unit vectors in directions of Ch and T,

respectively. Left: metallic (5,5); Right: semiconducting (10,0) nanotubes

Figure 2.6: The dispersion relation (a), the electronic band structure (b) and the density of
states (c) for a (4,2) carbon nanotube. The zero energy represents the Fermi level]

Chapter 2. Background 10

∆Eg =
2acc
dt

(2.7)

This 1
dt

dependence relies on the assumption of a linear dispersion cone around K-points in the

BZ of graphene.

Due to its 1D character, the density of states (DOS) ∆N/∆E of SWCNTs is proportional to

(| δE(k)
δk |)

−1 and diverges as |E|/
√
E2 − (E0)2 close to band extrema E0, as can be seen in the

right hand panels of Fig. 2.6 c). These singularities in the DOS are called Van Hove singularities

(VHS) and are important to understand the optical properties of SWCNTs.

It is important to understand that in the TB calculations above, the Coulomb interactions are

omitted and only proceed with the calculations for the neighboring atoms in the lattice.

2.1.3 Optical properties

Photoluminescence (PL) is a process in which a substance absorbs one or many photons and

then re-radiates photons. In quantum mechanics, this can be described as an excitation to a

higher energy state and then a return to a lower energy state accompanied by the emission of

a photon.

Photoluminescence in semiconducting nanotubes, which are direct bandgap systems, was ob-

served for the first time in 2002 and opened the way to carbon nanotube optics [13]. In this

experiment, carbon nanotubes were wrapped in a solution in order to separate individual tubes

from bundles. After studying the PL signal of SWCNTs wrapped in various surfactants, it be-

came clear that the wrapping material influences the PL spectra. Later it has been shown also

that experimental conditions, such as temperature and pH of the solution alter the measured

spectra of SWCNTs as well [14–16].

In this work, we used suspended nanotubes that were grown between structures that separate

them from the substrate material (as described in the following section). Since suspended SWC-

NTs do not contact substrates or any surrounding medium and have been shown to emit intense

and sharp PL peaks [17], they are ideal systems for the investigation of the optical properties of

individual tubes. A quantitative comparison between the PL spectra from suspended nanotubes

Chapter 2. Background 11

Figure 2.8: Density of states as suggested by i) TB approximation ii)TB approximation with
Coulomb interaction iii) the normalized discrete excitonic states

and micelle-encapsulated nanotubes was reported by Jacques Lefebvre et al. and showed a red-

shift of 28 meV in average for E11 and 16 meV for E22 for encapsulated nanotubes compared

to air-suspended SWCNTs [18].

Figure 2.7: E22 (excitation)
and E11 (emission) energies

The absorption and emission energies are usually not the same

in experiments. Nanotubes are excited with light polarized in

the direction of the tube axis (antenna effect) in the E22 tran-

sition, and PL is measured from radiation in the E11 transition

(Fig. 2.7). The E22/E11 ratio from TB calculations is 2. How-

ever, experimental results yield a ratio around 1.8. This para-

doxical observation is called the ratio-problem. This is due to

the presence of excitonic states in the nanotube band gap.

An exciton consists of a photo-excited electron and hole bound

to each other by a Coulomb interaction in a semiconducting ma-

terial. In most bulk materials the binding energy is so low (mag-

nitude of meV) that excitonic states can only be observed at very

low temperatures. In the case of SWCNTs, because of their quasi

one dimensionality, the confinement of particles is so high that

the Coulomb interactions give rise to exciton binding energies of

about 1/3 of the band gap [19], making the excitonic nature of SWCNTs observable at room

temperature.

Chapter 2. Background 12

A more detailed view of the excitonic effects occurring in semiconducting nanotubes is depicted

in Fig. 2.8. The emission energies in SWCNTs are the result of two nearly equally important

Coulomb interactions, the self-energy which increases the band gap (ii) in the single particle

model (TB) (i) and the excitonic binding energy which decreases it (iii) with a series of discrete

excitonic states below the self-energy corrected continuum.

2.2 Synthesis

2.2.1 Sample preparation methods

Carbon nanotubes can be synthesized by various methods with arc-discharge, laser-ablation and

chemical vapor deposition (CVD) being the principal ones. The SWCNTs used in this work

have been produced by CVD method. In CVD, a flowing hydrocarbon gas is decomposed at a

growth temperature between 500 and 1000oC. The precipitation of carbon from the saturated

phase in metal catalyst particles (generally Fe, Ni or Co) leads to the formation of a tubular

carbon solid.

In the optical properties section it has been discussed that nanotubes lying on substrate material

do not exhibit PL [17]. In the experiments I used suspended carbon nanotubes to avoid the

environmental effect induced by the substrate material. The suspension of nanotubes can be

done in multiple ways, but in my experiments I used mesa-structures where nanotubes are grown

by CVD from catalytic particles lying on the mesa-structures. The mesa-structures used are

trenches or pillars with different pitches.

The spacing between two mesa-structures (consecutive trenches, pillars) has influence on the

tube bridging probability to a great extent. Fig. 2.9 shows the bridging probability (the per-

centage of pillar-pillar connections that have nanotubes growing between them) as a function

of pillar-pillar distance. It can be seen that for increasing pillar-pillar distance, the number

of connections decreases exponentially. Note: if the pillar-pillar distance approaches zero, the

probability of bundled nanotubes rises dramatically. Bundles of nanotubes generally quench

the PL and are therefore to avoid. It is preferable to have a larger distance between the pillars,

thus a lower bridging probability, but less entanglement. For a more in-depth analysis of the

synthesis of the synthesis of suspended tube samples, please refer to [20].

Chapter 2. Background 13

Figure 2.9: Pillar spacing dependence of bridging probability of suspended SWCNTs grown
on a square-lattice pillar array.

While the growth techniques described yield a high amount of high-quality nanotubes, the

formation mechanism of SWCNTs is still unknown. Previously the growth direction and speed

was credited to the flow of gas on the sample, but a series of experiments done by at Tokyo

University showed that SWCNT growth can occur even perpendicularly with respect to direction

of the gas flow [21].

2.2.2 Samples used in the experiments

In our experiments the samples were provided from three research groups: from Waseda Uni-

versity, Tokyo; from NRC, Canada and from TU Delft. The fabrication method applied was

CVD in all three cases. The pattern profile differed from sample to sample.

The samples provided by Prof. Y. Homma (Waseda University, Tokyo) have a Si substrate as

base material and the SWCNT are grown on the surface with a CVD technique. The group

used Co catalysts on their patterns to induce nanotube growth. Different patterns were defined

with chemical etching . As Fig. 2.10 shows, the samples have 10 regions consisting of trenches

(Fig. 2.11 a)), while the other consists of pillars (Fig. 2.11 b)).

It is important to note that one of the three samples provided by Waseda University has been

investigated by SEM imaging (as seen on Fig. 2.11). It is known that high-energy electron

irradiation on a nanotube causes structural damage due to a ballistic ejection of carbon atoms.

Chapter 2. Background 14

Figure 2.10: Schematics of the samples

Figure 2.11: SEM images of the samples

Figure 2.12: SEM image of the sample

Chapter 2. Background 15

Experimentally it has been shown that this effect leads to the decrease of the PL of nanotubes.

However this phenomenon is paradoxical: since the threshold of ejection of carbon nanotubes is

86 keV, whereas SEM imaging bombards the sample only with 0.5-25keV electrons [22]. Inter-

estingly it has been reported that these structural defect heal at room temperature, depending

on the diameter of the nanotubes [23].

The samples from NRC are similar to the samples from Waseda University. They are made of

trenches only, as shown on the SEM image on Fig. 2.12.

The last group of samples were designed and synthesized by the QT group of TU Delft. The

patterns on the sample consists only of trenches, which are spaced periodically.

Chapter 3

Experimental design

3.1 Equipment

3.1.1 Confocal microscope setup

Suspended individual carbon nanotubes emit light in the NIR when excited in their E22 tran-

sitions. In order to study this effect we built a dedicated confocal microscope setup for near

infrared optics, optimized for PL detection of nanotubes. The schematics as well as a picture

(early stage) of the setup are shown in Figure 3.1 a) and b), respectively.

The excitation light from different sources (described in section 3.1.3) is guided to the setup

through a single or multimode fiber (1). The beam is then collimated by an aspheric lens

and directed towards a 10:90 neutral density filter (2) such that 10% of the beam intensity is

focused on the sample (mounted on a piezo x-y-z stage from Newport described in section 3.1.4

(5)) through an IR objective with a NA of 0.42 and a working distance of 20 mm (4). The

90% of light reflected by the density filter reaches a powermeter (described in section 3.1.5)

in order to control the power on the sample. The PL collected from the sample, as well as a

reflected fraction of the laser light goes back through the microscope objective and about 90%

of the intensity is reflected by the neutral density filter (2) in the spectrometer (7) direction,

where the sample reflected laser light is blocked by a long wavelength pass filter with a cutoff

wavelength of 1150 nm (6). The sample is imaged using white light (11) directed towards the

sample through a flip 45:55 pellicle beam splitter (3) and through the objective (4). The light

reflected from the sample is reflected by a fixed pellicle beamsplitter (8) and focused (9) on a

16

Chapter 3. Experimental Setup 17

Figure 3.1: a) Schematics of the home built confocal microscope setup. b) Picture of the
confocal microscope setup mounted on a dedicated optical table. The monochromator with a
fitted InGaAs detector lies on the same table, optically aligned with the setup (on the left, not

shown on this picture)

Chapter 3. Experimental Setup 18

Si-CCD
detector

InGaAs
detector

A
D

CE

BG

H

a) b)

Blaze
angle

d

Grating normal

a

b

Θ -Θ’

Light reflected
from the sample

Figure 3.2: Schematic of the monochromator

CCD camera (10). The quality of the image is dramatically improved by the use of an optical

”black hole” (13) to avoid that light coming directly from the white light source disturbs the

image. The spectrometer is connected to a PC, via USB connection, in order to control the

mirrors and gratings inside.

On Figure 3.1 b) the setup in its earlier state can be seen. The sample scanning is made possible

through a moving stage that has three degrees of freedom, and which is controlled via the serial

COM port of a PC. In general most of the control software was written in MATLAB.

3.1.2 Spectrometer

The detection part of our setup consists of a nitrogen cooled InGaAs detector array fitted to

a monochromator. The Princeton Instruments Oma V detector [24] consists of a linear array

of 512 InGaAs photodiodes able to detect light with a wavelength ranging from 0.8 µm to 1.7

µm. The monochromator is a Spectra Pro 750 with an aperture ratio f /9.7 corresponding to a

NA of about 0.05, or an acceptance angle of 2 · 2.9o1. A schematics of the spectrometer and the

InGaAs detector can be seen in Fig. 3.2 a.).

1 f
#

= 1
2·NA , NA = n · sin θ

Chapter 3. Experimental Setup 19

The fundamental operation principle of the spectrograph is described in the following paragraph.

A collimated light beam coming from the confocal microscope setup is focused at the entrance

slits (A) by an f = 5 cm lens. The choice of the focal length of the lens is dictated by the

f-number of the monochromator (f/9.7) and the diameter of the collimated light beam. The

light rays that passed through the slit are directed through a planar mirror (B) onto a parabolic

mirror (C), which reflects the incident rays in a collimated beam. This collimated beam is

then diffracted by a grating (D), which disperses light with different wavelengths with different

corresponding angles.

The dispersed light rays with different wavelengths are finally focused by a second parabolic

mirror (E) on different spatial locations along the InGaAs array (H). Thus a spectrum of the

light intensity as a function of the wavelength can be obtained. Note: in our setup two detectors

were available: an InGaAs detector and a Si CCD detector. The selection of the detector was

made through a flip-mirror (G).

A more detailed description of gratings physics is given in this paragraph. The cross-section of

a ruled grating surface with incident and diffracted rays is shown in Fig. 3.2 b.). In principle a

ruled grating consists of a substrate material (typically crystal silicon substrate or fiber-glass)

with a large number of parallel grooves, coated with a reflecting material such as aluminium.

On the figure two rays of the same wavelength travel parallel to each other and impact the

grating on two neighboring grooves. A maximum of intensity occurs, when the two refracted

rays have the same phase. Therefore, the location of intensity maxima can be calculated, from

the path difference between the rays:

n · λ = a− b =

= d · sin(θ)− d · sin(θ′)

= d(sin(θ)− sin(−θ′)) =

= d(sin(θ) + sin(θ′)) (3.1)

Where d is the groove spacing, λ the wavelength, θ and θ′ the angles measured from the grating

normal for the incident and reflected angles, respectively and n is an integer, which corresponds

to different diffraction orders of a grating (we usually only work with the first order, n = 1).

Chapter 3. Experimental Setup 20

Eq. 3.1 is known as the grating equation. Dispersion, which refers to the angle in which the

same spectrum is spread can be deduced quantitatively from the grating equation and is found

to be inversely proportional to d, the grating constant.

dθ′

dλ
=

m

d · cos θ′
(3.2)

Thus, for a grating with a high (low) groove density the dispersion will be large (small), and

consequently the resolution will be high (low) but with lower (higher) intensity. The blaze angle

(Fig. 3.2 b.)) determines the efficiency curve of a grating. For example, a grating ”blazed” at

1,3 µm will have its maximum efficiency at this wavelength.

In our setup, 3 different gratings are mounted on a turret (D). These gratings have the following

parameters: 1) 85 g/mm, ”blazed” at 1,3 µm, 2) 600 g/mm, ”blazed” at 1,6 µm and 3) 1800

g/mm, ”blazed” in the visible, with the software (WinSpec), a setting is available to change the

grating in use and the center wavelength of the detected spectrum.

The InGaAs detector, consisting of an array of 512 photodiodes, is characterized by different

parameters. An important one is called dark noise. There are two sources of dark noise: first, the

reverse bias leakage current, which is due to minority carrier diffusion and secondly thermally

activated carriers.

To decrease the dark noise, the array is cooled down via a cryostat filled with liquid nitro-

gen. Once the sensor’s temperature drops to approximately -100 0C the system is ready for

measurement.

Statistically dark noise is random and since its distribution is even, it can be subtracted from

the measured signal in order to increase signal to noise ratio. For this a background of the dark

noise is recorded before measurement (slit closed) and the software automatically subtracts it

from the signal.

An important measurement parameter is the integration time, which determines the amount of

time elapsed to record a spectrum. Since dark noise is completely random an integration time

twice as long increases the signal to noise ration by a factor of
√

2, thus long integration times

(1 minute or more) are helpful, to get ”cleaner” SWCNT PL spectra. Shorter integration time

is used when scanning a sample, in order to shorten the measurement time.

Chapter 3. Experimental Setup 21

3.1.3 Lasers

In the laboratory I had access to two laser sources: a Mira 900 and a Spectra Physics 3900.

The Mira 900 is a mode locked ultrafast laser that uses Titanium:sapphire as the gain medium.

It is tunable from 710 to 1000 nm. There are two modes of operation for this laser: the low

power configuration uses 8 Watts and the high power 12 Watts from the pump laser (Verdi). The

emitted laser power is 500 mW and 1100 mW, respectively. The output polarization is horizontal

in every mode. The 3900 manufactured by Spectra Physics also uses Titanium-doped sapphire

as the gain medium. The peak intensity is reached at 790 nm. An average output power of 2.5

W can be reached with a pump power of 20 W. The polarization is horizontal for all operation

modes.

It can be shown that the 700 nm-1000 nm range of these lasers fits with the E22, transitions of

small diameter (< 1.2 nm) SWCNTs emitting in the available InGaAs detection range (900-1600

nm).

3.1.4 Motors

During my experiments I used two types of motors: 3 piezo-motors (from Newport) and a

stepper motor (from Standa). The piezo-motors have been used to manipulate the sample

stage with a 50 nanometer precision, although this was not a reproducible movement, since the

motor operated in an open-loop. The stepper motor was used to change the wavelength of the

laser. Both of the motors were automated from a Matlab routine via the serial interface of the

computer. The implementation codes can be found in Appendix A.

3.1.5 Power meter

A power meter (Thorlabs PM100) was used in order to measure the laser power density on the

samples. The readout range of the power meter depends on the sensor in use. In the laboratory

we had access to sensors to read power ranging from 50 nW up to 20 W, with a 12 bit resolution.

The read-out of the power meter as well as the tuning of measurement parameters (e.g λ range)

could be computer-controlled via the serial port.

Chapter 3. Experimental Setup 22

3.2 Description of the measurement procedures

The focus of my thesis is the optical investigation of carbon nanotubes. My tasks included:

� Find a nanotube manually, for the purpose of optimizing the detection parameters.

� Sample mapping, in order to get a map of the position of optically active SWCNTs on a

large area (mm × mm).

� PLE mapping, in order to assign chirality of a SWCNT

These three tasks are implemented in two Matlab GUIs (one for manual search and sample

mapping, the second one for PLE mapping) that I want to describe below briefly.

3.3 PLE mapping automatization

As described earlier in the theory section, semiconducting nanotubes can be excited in their

E22 transitions and emit light in the E11 transition. When the excitation photons have exactly

the same energy as the E22 transition, we say that they are resonant. In this case the emission

intensity is the highest. It would then be very useful to record the emission wavelength and

intensity as a function of the excitation wavelength. Such a measurement output is called a

photoluminescence excitation (PLE) map.

To realize this, I controlled the excitation wavelength of the Mira 900 or the Spectrum Physics

3900 lasers with a step motor (section 3.1.4) connected to the micrometer control of the laser

with a belt. The step-motor is controlled via the USB port by a control box. The range and

velocity wavelength change rate are controlled from a Matlab GUI that I wrote, using a DLL

package to command the control box. I calibrated the motor so that the wavelength change is

a linear function of the number of steps. Since the output power of the laser is not constant

over the full NIR range, I had to normalize each recorded spectrum. For this I read the power

on the sample (indirectly from the reflected power, see Fig. 3.1 a)) from the power meter via

the RS-232 port. A flowchart of the GUI program is shown in Fig. 3.3.

Upon initializing, the user has to reset the current stepper motor position, which will be associ-

ated with the current wavelength. From this point on the program is able to calculate the current

wavelength, based on the ratio that I measured (the slope of the step position vs. wavelength

Chapter 3. Experimental Setup 23

Initialization

Move to

next

wavelength

Record

Spectrum

Power on

sample

Reached end

wavelength?

N

Y

Normalize data

to the lowest

measured power

Display data

Figure 3.3: Flowchart of the PLE automatization

line). The program allows the user to move to a certain wavelength, or to a certain position.

The PLE map generation needs only 3 parameters: the starting and the end wavelength and

the step size, which determines the resolution of the PLE map.

To calculate the power density the area of the beam had to be calculated. For this I wrote

a software that utilizes the CCD camera image through an image processing algorithm. The

image taken by the CCD camera is first converted, so it can be manipulated in MATLAB. In

Matlab the user has to select an X or Y coordinate, along which a cross-section will be made

through the beam. From the cross-section the beam’s diameter can be determined in the scale

of pixels. To convert this to a micrometer scale I used a calibration sample, in order to find out

the conversion ratio.

3.3.1 Manual search and sample mapping

As described earlier, the sample with suspended nanotubes is positioned on a x-y-z stage actu-

ated by three piezo steppers from Newport (AG LS-25) with a specified minimum step size of

50 nm. These steppers are operated in open loop and the step size is therefore not reproducible.

Chapter 3. Experimental Setup 24

The GUI that we developed in Matlab to control the piezo steppers via the serial communica-

tion port for manual search and sample mapping is shown in Appendix B. Each direction can

be set with three different step sizes (low, medium, high). The motors are equipped with an

odometric position feedback, therefore we are able to track the movement of the stage precisely

(after compensating the motors). After locating a starting point for our scan we have to reset

the positioning so we know how far we are on our sample. This has to be done, because it is

not possible to record a spectrum and to image with the CCD camera at the same time.

For sample mapping, the user can input the amount of steps to be scanned in X and Y directions,

with the amount of ”piezo-steps” in each step. Since the backward and forward direction

steps are intrinsically different, we have to compensate to minimize the drift in imaging. The

scanning takes place first from the left to right than from the right to the left, in a meander

shape. The sequence consists of 4 stages: first the motors move to the next location, then the

program waits for the motors to reach their destination and for all the drift effects to die out.

Next, the spectrum gets recorded, therefore the program has to maintain communication with

the spectrograph’s motherboard. This is done via an ActiveX Server initialized from Matlab.

Depending on the integration time set in WinSpec (the GUI for the control of the spectrograph,

provided by Princeton Instruments), the program waits for the execution and after waiting and

additional time, the sequence repeats itself.

When the final destination is reached the program stops. All the spectra taken during the

process are stored in a folder, in a format that is custom to Princeton Instruments, with the

extension .SPE, which contains a header with information about the whole experiment (date,

sensors used, grating and mirror positions, dark noise, etc.).

The final data set of a sample mapping consists of a 3-dimensional matrix with the position in

x-y and the spectra in z. It is then possible to scroll through in z to obtain x-y maps at different

emitted wavelengths.

Chapter 4

Results

4.1 Locating SWCNTs

My first task was to locate SWCNTs on different samples. For this, I used the equipment

described in Chapter 3. Although the density of nanotubes on the sample is relatively large,

only a very small proportion can be detected. This is due to the following reasons:

� In average, only 2/3 of nanotubes in a batch are semiconducting, i.e. having a band gap.

The other 1/3 are metallic and can only emit light in very special conditions [25].

� Among the 2/3 of semiconducting nanotubes, only small diameter ones (< 1.2 nm approx-

imately) emit in the detection range (900 nm - 1600 nm) of our InGaAs array. We do not

have a statistical distribution of the tube diameter available, but based on the experience

in growing tubes in the group, it is thought that the probability to get d < 1.2 nm is less

than 10%.

� Furthermore, as a function of the trench width or pillar pitch, the probability to get

entangled tubes or bundles is relatively high [22]. If small diameter semiconducting tubes

are bundled with larger diameter tubes, it has been shown that the excitons generated

in these tubes diffuse to larger diameter ones and recombine by emitting photons out of

detection range. If metallic tubes are present in the bundle, they can quench the PL [26].

All these points together make the detection of a single SWCNT very challenging.

25

Chapter 4. Results 26

Figure 4.1: Measured photoluminescense. a.) SWCNT found b.) no tube in the spot area

The search for a SWCNT was done manually in a first step. Figure 4.1 shows two spectra: a)

An optically active nanotube was lying under the beam, (integration time 60 seconds). Next

to the PL signal of the nanotube around 1440 nm, the edge of a peak can be seen around 1250

nm, which is due to PL from the Si substrate luminescence. SWCNTs luminescing below 1250

nm are therefore more difficult to detect. On b), a spectrum, where no optically active tube is

lying in the beam. Only the PL from the substrate is visible.

Figure 4.2 a) shows a PL spectrum from an individual SWCNT with a higher integration time

in order to increase the signal to noise ratio (60 s integration time). The spectrum shows a peak

at 1455 nm corresponding to 852 meV (conversion formula in footnote)1. This peak shows the

characteristic asymmetric line shape with a sharp rise on the low energy side (larger wavelength)

and a more gradual fall off to zero at high energies (lower wavelength), consistent with the

shape of van Hove singularities (VHS) in the joint density of states [27]. From a lorentzian

fit, the full width at half maximum is found to be about 16 meV. The resonant nature of the

photoluminescence intensity can be checked by varying the Ti:sapph laser wavelength while

1E[eV] = hν = hc
λ

= 4.136·10−15eV ·s·2.998·108m·a−1

λ(m)
= 1,23

λ

Chapter 4. Results 27

Figure 4.2: Photoluminescence spectrum of a nanotube with a Lorentzian-fit

recording the emission spectra. The result of these measurements is called a PLE map. PLE

maps are very useful to assign the chirality of nanotubes and will be discussed later in this

chapter.

Once a nanotube is found, the focus distance, i.e. the distance between the tube and the

objective has to be optimized in order to get the maximum signal in the monochromator. This

corresponds to a nearly collimated beam before the monochromator lens (see Fig. 3.1 a)). The

focus was first set to get the sharpest white light image. From basic optical knowledge it is known

that light with longer wavelength focuses further from the lens. For this reason I increased the

distance between the stage and the objective until I reached the maximum intensity. In terms

of piezo-steps, this distance has been found around 30 and 55 in low resolution.

I repeated the optimization process on more than 10 nanotubes distributed over the sample.

Initially the beam size was too small, making the search for a tube even more difficult. One of the

improvements that had to be made to the setup was the implementation of a lens positioned at

twice the focal length from the objective aperture. This leads to a defocusing of the beam, giving

rise to a larger spot size. Figure 4.3 shows the setup alteration that has been implemented in

order to increase the probability of presence of a nanotube under the laser spot during scanning.

Chapter 4. Results 28

Figure 4.3: Setup modification in order to increase the beam size

An important parameter for PL measurements is the power density applied on the sample. To

precisely tune the power density, the power on the sample and the size of the laser spot have to

be measured.

The power can be measured precisely using the parameters described in Chapter 3. The problem

arises, when the beam area has to be measured. The measurement of the laser spot diameter is

made from a line cut in the CCD camera image processed in MATLAB, as show in Fig. 4.4. The

laser power had to be decreased to minimum to ensure that the CCD camera did not saturate.

The MATLAB algorithm that I wrote can be found in Appendix A (getbeam.m). In the case

where the beam was defocused, we measured a beam diameter of 11.9 µm, while the original

beam size was measured to be only 8 µm for a wavelength of 820 nm with the laser coupled to

a multimode fiber. Thus the optimal power on the sample in these conditions was calculated to

be 0.63mW and 1.41mW, respectively.

Chapter 4. Results 29

Figure 4.4: Beam diameter measurement from the CCD image a) beam with lens, b) beam
without lens

4.2 The aging effect of SWCNTs

During the measurement process, I came across a noticeable effect: the decay of the PL intensity

over time. This effect has been observed for all investigated nanotubes on different samples.

Fig. 4.5 shows a graph of the intensity in counts/s as a function of the time for a SWCNT

excited at 860 nm (close to resonance) under a power density of about 0.44 kW/cm2. The

intensity decreased by a factor 10 after about 3h of excitation.

The plot in Fig. 4.6 shows the time elapsed under continuous excitation at 860 nm to reach

an intensity decrease of a factor 10 as a function of the power density for four nanotubes. It

suggests a quicker decay with higher power density. A similar behavior has been observed by

another group at Queen University in Canada. They observed differences in PL decay as a

function of the relative humidity. A low relative humidity of 15-20% reduced the incidence of

aging [28].

Another reported source of PL decay is the collapse of the nanotubes under purely optical

forces (with power densities of the order of MW/cm2), either from photon momentum transfer,

Chapter 4. Results 30

Figure 4.5: The degradation of the PL signal from an individual SWCNT over time

Figure 4.6: The time elapsed under continuous excitation at 860 nm to reach an intensity
decrease of a factor 10 as a function of the power density for four nanotubes

Chapter 4. Results 31

or from the induced dipole gradient [29]. From the reported power densities, we think that in

our case the effect of humidity is more likely to be the main source of decay.

This effect prevents long measurements like PLE maps (see next sections) and has to be mini-

mized in future experiments. This can be done by working with the sample in a vacuum chamber

purged and filled with a nitrogen atmosphere for example [28].

4.3 Sample mapping

Here the goal is to provide a map of the position of optically active nanotubes on a macroscopic

area (typically a few mm2) using the program described in section 3.2.3. A good trade off

between the time needed to record such a map and the spatial resolution has to be found. In

the map shown in Fig. 4.7, the scanning area is about 200 µm × 200 µm, with approximately

3500 points in each x and y directions. The integration time is set to 2 s (which is the inferior

limit in order to clearly identify the PL of a tube out of the noise) and the excitation wavelength

is set to 820 nm. The choice of the excitation wavelength determines the tube chirality we are

looking for. 820 nm does not correspond to any resonant wavelength, but doing so we include

several chiralities with a resonant excitation close to 820 nm, i.e. (13,2), (12,4) and (11,6).

Since the integration time is set at the limit of detection in the map shown in Fig. 4.7, it is

difficult to attribute the spots to SWCNTs. Also, at this stage of development the setup could

not be used yet to trace back the tubes since the piezo motors are working in open loop, i.e.

the step size is not reproducible. Another difficulty is the fact that the sample is always tilted

in a small amount, giving rise to change in focus, i.e. change in intensity at the monochromator

slits, between the lowest and highest positions. This can be compensated by actively changing

the focus during the scan.

4.4 PLE mapping

Once an optically active nanotube is found, the next step is to assign its chirality. For this I

recorded a PLE map using the GUI described in Chap. 3. Fig. 4.8 c) shows a typical PLE map

recorded on the NRC sample. The emission wavelength is recorded in the range 1200 nm - 1600

nm and the excitation is swept from 750 nm to 900 nm with 5 nm steps. The integration time is

2 seconds. Below 1270 nm, the emission from the Si substrate is clearly visible. The maximum

Chapter 4. Results 32

Figure 4.7: Mapped samples with possible nanotubes

intensity for the nanotube is recorded at an emission wavelength of about 1375 nm and for an

excitation wavelength of about 855 nm.

From these two values, it is possible to assign the chirality of the nanotube. Indeed, Bachilo

et al. studied SWCNTs suspended in micelles and could provide assignment tables from a

comparison of their results with Raman spectroscopy on individual SWCNTs [30]. This table

can be found in Appendix C. However, it is not possible yet to assign our nanotube. Indeed, it

has been reported that the direct environment of individual nanotubes shifts the E22 and E11

transitions.

Lefebvre et al. found that emission peaks are blueshifted by 28 meV on average for the suspended

nanotubes as compared to the encapsulated nanotubes. Similarly, the resonant absorption peaks

at the second set of van Hove singularities are blueshifted on average by 16meV. Considering

this small shifts, I found the best match for the tube in Fig. 4.8 to be (11,6). The spectrum

Chapter 4. Results 33

F
ig

u
r
e

4
.8

:
P

L
E

m
ap

of
a

(1
1,

6)
in

di
vi

du
al

na
no

tu
be

c)
,

w
it

h
cr

os
s-

se
ct

io
ns

at
85

5
nm

a)
an

d
82

0
nm

b)

Chapter 4. Results 34

of this tube recorded at an excitation wavelength of 855 nm is displayed in panel a). A small

spot is also visible at an emission wavelength of 1510 nm and excitation wavelength of 820 nm.

The spectrum displayed in panel b) at an excitation wavelength of 820 nm shows a peak shape

similar to the one of a nanotube. The best match would then be a (12,5).

It is important to note that we recorded a higher resolution PLE map of the (11,6) nanotube

prior to the shown map and the supposed (12,5) tube was not present. It might be a tube that

became optically active for a reason we don’t really understand. With a longer integration time

and smaller steps in excitation wavelength, we would get a better quality PLE map. However,

such long measurements would be strongly limited by the aging effect for tubes in ambient

conditions we described earlier in section 4.2.

Chapter 5

Conclusion and Outlook

5.1 Conclusion and outlook

In this work, I measured the photoluminescence of individual single wall carbon nanotubes

from different samples with a home made experimental setup. The most important part of

my work was to implement routines in Matlab in order to automatize the search of optically

active nanotubes as well as PLE mapping to assign the chirality of the tubes I found. I also

modified the ”hardware” part of the setup to enlarge the laser spot size on the sample in order

to facilitate the tube searching process.

I observed an aging phenomenon characterized by a decay of the PL from individual tubes.

The decay rate increased with the power density excitation. From the available literature,

I attributed this effect to the relative humidity in the direct environment of the suspended

nanotubes.

In the future, several improvements have to be made in order to allow more in-depth investiga-

tions of the optical properties of suspended nanotubes. This will be useful to design and study

future nanotube-based optoelectronic devices, especially ultraclean nanotube devices developed

in the Quantum Transport group using a new technology [31].

Some of the possible improvements are:

� Using closed loop piezo motors in order to have a reproducible positioning system. A

beam scanner using galvo mirrors is to be considered as well. This would allow quicker

record of spatial maps as well as a higher flexibility in the beam scanning.

35

Chapter 5. Conclusion and Outlook 36

� Include a system that allows a cleaner and dryer environment of the tubes, in order to

minimize or even suppress the aging effect. This can be realized by the implementation

of a vacuum chamber with gas inlets for flushing. This vacuum chamber could be easily

converted to a cryostat allowing low temperature measurements.

� In this work, we did not perform polarization measurements. For this we need to setup

polarizers and wave plates.

Appendix A

Program codes

A.1 RT Setup.m

1 % ---

2 % ---

3 % Automization RT_setup @ Vlab

4 %

5 % Gilles Buchs and David Lakatos

6 % November 2009, TU Delft

7 % ---

8 % ---

9

10

11 function varargout = RT_setup(varargin)

12

13 % Begin initialization code - DO NOT EDIT

14 gui_Singleton = 1;

15 gui_State = struct('gui_Name ', mfilename , ...

16 'gui_Singleton ', gui_Singleton , ...

17 'gui_OpeningFcn ', @RT_setup_OpeningFcn , ...

18 'gui_OutputFcn ', @RT_setup_OutputFcn , ...

19 'gui_LayoutFcn ', [] , ...

20 'gui_Callback ', []);

21 if nargin && ischar(varargin {1})

22 gui_State.gui_Callback = str2func(varargin {1});

23 end

24

25 if nargout

26 [varargout {1: nargout }] = gui_mainfcn(gui_State , varargin {:});

27 else

37

Appendix A. Program codes 38

28 gui_mainfcn(gui_State , varargin {:});

29 end

30 % End initialization code - DO NOT EDIT

31

32

33 % ---

34 % RT_setup_OpeningFcn

35 % ---

36 %

37 % --- Executes just before RT_setup is made visible.

38 function RT_setup_OpeningFcn(hObject , eventdata , handles , varargin)

39

40 clc;

41 % Choose default command line output for RT_setup

42 handles.output = hObject;

43

44 % Default jog speed (3 = high speed)

45 handles.speed =3;

46

47 % Default Z speed (3 = high speed)

48 handles.speed_Z =3;

49

50 % Initialization Button Stop

51 handles.stop =0;

52

53 % Define action when one wants to close the GUI

54 set(handles.figure1 ,'CloseRequestFcn ',@closeGUI);

55

56 % Define action when different radiobuttons in XY are selected

57 set(handles.Speed_Panel_buttongroup ,'SelectionChangeFcn ',...

58 @Speed_Panel_buttongroup_SelectionChangeFcn);

59

60 % Define action when different radiobuttons in Z are selected

61 set(handles.Speed_Z_Panel_buttongroup ,'SelectionChangeFcn ',...

62 @Speed_Z_Panel_buttongroup_SelectionChangeFcn);

63

64 % Define action when different togglebuttons in MODES are selected

65 set(handles.MODE_buttongroup ,'SelectionChangeFcn ',...

66 @MODE_buttongroup_SelectionChangeFcn);

67

68 % Define action when different radiobuttons in Detector are selected

69 set(handles.Detector_buttongroup ,'SelectionChangeFcn ',...

70 @Detector_buttongroup_SelectionChangeFcn);

71

72 % Initialization number of clicks on serial port gestion buttons

73 handles.Nb_click_open_XY =0;

74 handles.Nb_click_open_Z =0;

75 handles.Nb_click_close_XY =0;

Appendix A. Program codes 39

76 handles.Nb_click_close_Z =0;

77

78 % Default wavelenght (index) value for map display

79 handles.sliderValue =1;

80

81 % Default value for detector pixels (InGas :512, Si :1340)

82 handles.pix =512;

83 handles.Max_slider =511;

84 handles.SliderStep =[0 .00195 0.1];

85

86 % Update handles structure

87 guidata(hObject , handles);

88

89 % Close all open instruments

90 delete(instrfindall)

91 clear all

92 %

93 % ---

94

95

96

97 % UIWAIT makes RT_setup wait for user response (see UIRESUME)

98 % uiwait(handles.figure1);

99

100

101

102 % ---

103 % RT_setup_OutputFcn

104 % ---

105 %

106 % --- Outputs from this function are returned to the command line.

107 function varargout = RT_setup_OutputFcn(hObject , eventdata , handles)

108 % Get default command line output from handles structure

109 varargout {1} = handles.output;

110 %

111 % ---

112

113

114

115

116

117 % ---

118 % Control serial ports (piezos & InGaAs)

119 % ---

120 %

121 %

122 %

123 % --- Executes on button press in OpenXY.

Appendix A. Program codes 40

124 function OpenXY_Callback(hObject , eventdata , handles)

125

126 handles.Nb_click_open_XY=handles.Nb_click_open_XY +1;

127 handles.Nb_click_close_XY =0;

128

129 if (handles.Nb_click_open_XY < 2)

130 set(handles.XY_status ,'String ','OPEN');

131 set(handles.XY_status ,'BackGroundColor ' ,[0.2 ,0.8 ,0]);

132 set(handles.XY_status ,'ForegroundColor ' ,[1,1,1])

133 guidata(hObject ,handles);

134

135 % Opens a serial communication object

136 global S1

137 S1=serial('COM5',...

138 'BaudRate ', 921600 , ...

139 'Parity ', 'none', ...

140 'DataBits ',8, ...

141 'StopBits ', 1, ...

142 'FlowControl ','none',...

143 'Terminator ', 'CR/LF');

144 fopen(S1)

145 else

146 errordlg('Serial port already open','Error ');

147 end

148 %

149 %

150 % --- Executes on button press in CloseXY.

151 function CloseXY_Callback(hObject , eventdata , handles)

152

153 handles.Nb_click_close_XY=handles.Nb_click_close_XY +1;

154 handles.Nb_click_open_XY =0;

155

156 if (handles.Nb_click_close_XY < 2)

157 set(handles.XY_status ,'String ','CLOSED ');

158 set(handles.XY_status ,'FontWeight ','bold');

159 set(handles.XY_status ,'BackGroundColor ' ,[1,0,0]);

160 set(handles.XY_status ,'ForegroundColor ' ,[1,1,1])

161 guidata(hObject ,handles);

162 %

163 global S1

164 fclose(S1);

165 delete(S1);

166 clear S1

167

168 else

169 errordlg('Serial port already closed ','Error ');

170 end

171 %

Appendix A. Program codes 41

172 %

173 % --- Executes on button press in OpenZ.

174 function OpenZ_Callback(hObject , eventdata , handles)

175

176 handles.Nb_click_open_Z=handles.Nb_click_open_Z +1;

177 handles.Nb_click_close_Z =0;

178

179 if (handles.Nb_click_open_Z < 2)

180 set(handles.Z_status ,'String ','OPEN');

181 set(handles.Z_status ,'FontWeight ','bold');

182 set(handles.Z_status ,'BackGroundColor ' ,[0.2 ,0.8 ,0]);

183 set(handles.Z_status ,'ForegroundColor ' ,[1,1,1]);

184 guidata(hObject ,handles);

185

186 % --- Opens a serial communication object

187 global S2

188 S2=serial('COM6',...

189 'BaudRate ', 921600 , ...

190 'Parity ', 'none', ...

191 'DataBits ',8, ...

192 'StopBits ', 1, ...

193 'FlowControl ','none',...

194 'Terminator ', 'CR/LF');

195

196 fopen(S2);

197

198 else

199 errordlg('Serial port already open','Error ');

200 end

201 %

202 %

203 % --- Executes on button press in CloseZ.

204 function CloseZ_Callback(hObject , eventdata , handles)

205

206 handles.Nb_click_close_Z=handles.Nb_click_close_Z +1;

207 handles.Nb_click_open_Z =0;

208

209 if (handles.Nb_click_close_Z < 2)

210 set(handles.Z_status ,'String ','CLOSED ');

211 set(handles.Z_status ,'FontWeight ','bold');

212 set(handles.Z_status ,'BackGroundColor ' ,[1,0,0]);

213 set(handles.Z_status ,'ForegroundColor ' ,[1,1,1]);

214 guidata(hObject ,handles);

215

216 global S2

217 fclose(S2);

218 delete(S2);

219 clear S2

Appendix A. Program codes 42

220 else

221 errordlg('Serial port already closed ','Error ');

222 end

223

224

225 function Detector_buttongroup_SelectionChangeFcn(hObject ,eventdata)

226

227 %retrieve GUI data , i.e. the handles structure

228 handles = guidata(hObject);

229

230 switch get(eventdata.NewValue ,'Tag') % Get Tag of selected object

231 case 'InGaAs_radiobutton '

232 handles.pix =512;

233 handles.Max_slider =511;

234 handles.SliderStep =[0 .00195 0.1];

235 display(handles.Max_slider)

236

237 case 'Si_radiobutton '

238 handles.pix =1340;

239 handles.Max_slider =1339;

240 handles.SliderStep =[0 .001 0.1];

241 display(handles.Max_slider)

242

243 otherwise

244 % Code for when there is no match.

245 display 'Choose a speed '

246

247 end

248 %updates the handles structure

249 guidata(hObject , handles);

250

251 %

252 %

253 % ---

254

255

256

257

258 % ---

259 % MODE: Remote or Local

260 % ---

261

262 function MODE_buttongroup_SelectionChangeFcn(hObject ,eventdata)

263

264 global S1

265 global S2

266

267 switch get(eventdata.NewValue ,'Tag') % Get Tag of selected object

Appendix A. Program codes 43

268 case 'Remote_Mode_button '

269 fprintf(S1,'MR')

270 fprintf(S2,'MR')

271

272 case 'Local_Mode_button '

273 fprintf(S1,'ML')

274 fprintf(S2,'ML')

275

276 otherwise

277 % Code for when there is no match.

278 display 'Error '

279

280 end

281

282 % ---

283

284

285

286

287

288 % ---

289 % Jog motion: manual acquisition of sample parameters (x_max_edit , y_max_edit)

290 % ---

291 %

292 %

293 % --- Executes on button press in X_right.

294 function X_right_ButtonDownFcn(hObject , eventdata , handles)

295

296 if (handles.Nb_click_open_XY 6= 0)

297 global S1

298 fprintf(S1,'MR')

299 fprintf(S1 ,['1JA',num2str(handles.speed)])

300 set(handles.X_right ,'String ','X +')

301 set(handles.X_right ,'BackgroundColor ',[.2 ,0.8 ,0])

302

303 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_X_right ,handles });

304 guidata(hObject , handles);

305 else

306 errordlg('Serial port need to be open','Error ');

307 end

308

309 function ButtonUpFcn_X_right(src ,eventdata ,handles)

310

311 global S1

312 fprintf(S1,'1ST');

313

314 %read step number in X

315 fprintf(S1,'1TP');

Appendix A. Program codes 44

316 temp_steps=fscanf(S1);

317 temp_length=length(temp_steps);

318 handles.Nb_steps_X=char (1: temp_length);

319 for i=1:(temp_length -3)

320 handles.Nb_steps_X(i)= temp_steps(i+3);

321 end

322 set(handles.Pos_X_steps ,'String ',handles.Nb_steps_X)

323 set(handles.X_right ,'String ','X +')

324 set(handles.X_right ,'BackgroundColor ',[.925 ,0.914 ,0.847])

325

326

327 % --- Executes on button press in X_left.

328 function X_left_ButtonDownFcn(hObject , eventdata , handles)

329

330 if (handles.Nb_click_open_XY 6= 0)

331 global S1

332 fprintf(S1,'MR')

333 fprintf(S1 ,['1JA -',num2str(handles.speed)])

334 set(handles.X_left ,'String ','X -')

335 set(handles.X_left ,'BackgroundColor ',[.2 ,0.8 ,0])

336

337 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_X_left ,handles });

338 guidata(hObject , handles);

339 else

340 errordlg('Serial port need to be open','Error ');

341 end

342

343 function ButtonUpFcn_X_left(src ,eventdata ,handles)

344 global S1

345 fprintf(S1,'1ST')

346

347 %read step number in X

348 fprintf(S1,'1TP');

349 temp_steps=fscanf(S1);

350 temp_length=length(temp_steps);

351 handles.Nb_steps_X=char (1: temp_length);

352 for i=1:(temp_length -3)

353 handles.Nb_steps_X(i)= temp_steps(i+3);

354 end

355

356 set(handles.Pos_X_steps ,'String ',num2str(handles.Nb_steps_X))

357 set(handles.X_left ,'String ','X -')

358 set(handles.X_left ,'BackgroundColor ',[.925 ,0.914 ,0.847])

359

360

361 % --- Executes on button press in Y_up.

362 function Y_up_ButtonDownFcn(hObject , eventdata , handles)

363

Appendix A. Program codes 45

364 if (handles.Nb_click_open_XY 6= 0)

365 global S1

366 fprintf(S1,'MR')

367 fprintf(S1 ,['2JA -',num2str(handles.speed)])

368 set(handles.Y_up ,'String ','Y +')

369 set(handles.Y_up ,'BackgroundColor ',[.2 ,0.8 ,0])

370

371 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_Y_up ,handles });

372 guidata(hObject , handles);

373 else

374 errordlg('Serial port need to be open','Error ');

375 end

376

377 function ButtonUpFcn_Y_up(src ,eventdata ,handles)

378 global S1

379 fprintf(S1,'2ST')

380

381 %read step number in Y

382 fprintf(S1,'2TP');

383 temp_steps=fscanf(S1);

384 temp_length=length(temp_steps);

385 handles.Nb_steps_Y=char (1: temp_length);

386 for i=1:(temp_length -3)

387 handles.Nb_steps_Y(i)= temp_steps(i+3);

388 end

389

390 set(handles.Pos_Y_steps ,'String ',num2str(handles.Nb_steps_Y))

391 set(handles.Y_up ,'String ','Y +')

392 set(handles.Y_up ,'BackgroundColor ',[.925 ,0.914 ,0.847])

393

394

395 % --- Executes on button press in Y_down.

396 function Y_down_ButtonDownFcn(hObject , eventdata , handles)

397

398 if (handles.Nb_click_open_XY 6= 0)

399 global S1

400 fprintf(S1,'MR')

401 fprintf(S1 ,['2JA',num2str(handles.speed)])

402 set(handles.Y_down ,'String ','Y -')

403 set(handles.Y_down ,'BackgroundColor ',[.2 ,0.8 ,0])

404

405 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_Y_down ,handles });

406 guidata(hObject , handles);

407 else

408 errordlg('Serial port need to be open','Error ');

409 end

410

411 function ButtonUpFcn_Y_down(src ,eventdata ,handles)

Appendix A. Program codes 46

412 global S1

413 fprintf(S1,'2ST')

414

415 %read step number in Y

416 fprintf(S1,'2TP');

417 temp_steps=fscanf(S1);

418 temp_length=length(temp_steps);

419 handles.Nb_steps_Y=char (1: temp_length);

420 for i=1:(temp_length -3)

421 handles.Nb_steps_Y(i)= temp_steps(i+3);

422 end

423

424 set(handles.Pos_Y_steps ,'String ',num2str(handles.Nb_steps_Y))

425 set(handles.Y_down ,'String ','Y -')

426 set(handles.Y_down ,'BackgroundColor ',[.925 ,0.914 ,0.847])

427

428

429

430 function Speed_Panel_buttongroup_SelectionChangeFcn(hObject ,eventdata)

431

432 %retrieve GUI data , i.e. the handles structure

433 handles = guidata(hObject);

434

435 switch get(eventdata.NewValue ,'Tag') % Get Tag of selected object

436 case 'High_radiobutton '

437 handles.speed =3;

438

439 case 'Medium_radiobutton '

440 handles.speed =2;

441

442 case 'Low_radiobutton '

443 handles.speed =1;

444

445 otherwise

446 % Code for when there is no match.

447 display 'Choose a speed '

448

449 end

450 %updates the handles structure

451 guidata(hObject , handles);

452

453

454

455 % --- Executes on button press in Reset_X_Button.

456 function Reset_X_Button_Callback(hObject , eventdata , handles)

457

458 if (handles.Nb_click_open_XY 6= 0)

459 global S1

Appendix A. Program codes 47

460 fprintf(S1,'1ZP');

461 set(handles.Pos_X_steps ,'String ','0');

462 set(handles.Pos_X_um ,'String ','0');

463 guidata(hObject , handles);

464 else

465 errordlg('Serial port need to be open','Error ');

466 end

467

468 % --- Executes on button press in Reset_Y_Button.

469 function Reset_Y_Button_Callback(hObject , eventdata , handles)

470

471 if (handles.Nb_click_open_XY 6= 0)

472 global S1

473 fprintf(S1,'2ZP');

474 set(handles.Pos_Y_steps ,'String ','0');

475 set(handles.Pos_Y_um ,'String ','0');

476 guidata(hObject , handles);

477 else

478 errordlg('Serial port need to be open','Error ');

479 end

480

481

482

483

484

485 % ---

486 % Focus Z motion

487 % ---

488 %

489 %

490 % --- Executes on button press in Z_up.

491 function Z_up_ButtonDownFcn(hObject , eventdata , handles)

492

493 if (handles.Nb_click_open_Z 6= 0)

494 global S2

495 fprintf(S2,'MR')

496 fprintf(S2 ,['2JA',num2str(handles.speed_Z)])

497 set(handles.Z_up ,'String ','Z +')

498 set(handles.Z_up ,'BackgroundColor ',[.2 ,0.8 ,0])

499

500 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_Z_up ,handles });

501 guidata(hObject , handles);

502 else

503 errordlg('Serial port need to be open','Error ');

504 end

505

506 function ButtonUpFcn_Z_up(src ,eventdata ,handles)

507 global S2

Appendix A. Program codes 48

508 fprintf(S2,'2ST')

509

510 %read step number in Z

511 fprintf(S2,'2TP');

512 temp_steps=fscanf(S2);

513 temp_length=length(temp_steps);

514 handles.Nb_steps_Z=char (1: temp_length);

515 for i=1:(temp_length -3)

516 handles.Nb_steps_Z(i)= temp_steps(i+3);

517 end

518

519 set(handles.Pos_Z_steps ,'String ',num2str(handles.Nb_steps_Z))

520 set(handles.Z_up ,'String ','Z +')

521 set(handles.Z_up ,'BackgroundColor ',[.925 ,0.914 ,0.847])

522

523

524

525 % --- Executes on button press in Z_down.

526 function Z_down_ButtonDownFcn(hObject , eventdata , handles)

527

528 if (handles.Nb_click_open_Z 6= 0)

529 global S2

530 fprintf(S2,'MR')

531 fprintf(S2,'2SU -43');

532 fprintf(S2 ,['2JA -',num2str(handles.speed_Z)])

533 set(handles.Z_down ,'String ','Z -')

534 set(handles.Z_down ,'BackgroundColor ',[.2 ,0.8 ,0])

535

536 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_Z_down ,handles });

537 guidata(hObject , handles);

538 else

539 errordlg('Serial port need to be open','Error ');

540 end

541

542 function ButtonUpFcn_Z_down(src ,eventdata ,handles)

543 global S2

544 fprintf(S2,'2ST')

545

546 %read step number in Z

547 fprintf(S2,'2TP');

548 temp_steps=fscanf(S2);

549 temp_length=length(temp_steps);

550 handles.Nb_steps_Z=char (1: temp_length);

551 for i=1:(temp_length -3)

552 handles.Nb_steps_Z(i)= temp_steps(i+3);

553 end

554

555 set(handles.Pos_Z_steps ,'String ',num2str(handles.Nb_steps_Z))

Appendix A. Program codes 49

556 set(handles.Z_down ,'String ','Z -')

557 set(handles.Z_down ,'BackgroundColor ',[.925 ,0.914 ,0.847])

558

559

560 % --- Select speed for Z motion.

561 function Speed_Z_Panel_buttongroup_SelectionChangeFcn(hObject ,eventdata)

562

563 %retrieve GUI data , i.e. the handles structure

564 handles = guidata(hObject);

565

566 switch get(eventdata.NewValue ,'Tag') % Get Tag of selected object

567 case 'Low_Z_radiobutton '

568 handles.speed_Z =1;

569

570 case 'Medium_Z_radiobutton '

571 handles.speed_Z =2;

572

573 case 'High_Z_radiobutton '

574 handles.speed_Z =3;

575

576 otherwise

577 % Code for when there is no match.

578 display 'Choose a speed '

579

580 end

581 %updates the handles structure

582 guidata(hObject , handles);

583

584

585 % --- Executes on button press in Reset_Z_Button.

586 function Reset_Z_Button_Callback(hObject , eventdata , handles)

587

588 if (handles.Nb_click_open_Z 6= 0)

589 global S2

590 fprintf(S2,'2ZP');

591 set(handles.Pos_Z_steps ,'String ','0');

592 guidata(hObject , handles);

593 else

594 errordlg('Serial port need to be open','Error ');

595 end

596

597 % ---

598

599

600

601

602

603

Appendix A. Program codes 50

604

605 % ---

606 % Sample mapping

607 % ---

608 %

609 %

610 % --- Executes on button press in Stop_button.

611 function Stop_button_ButtonDownFcn(hObject , eventdata , handles)

612

613 if (handles.Nb_click_open_XY 6= 0)

614 global S1

615 handles.stop =1;

616 fprintf(S1,'RS');

617 set(handles.Stop_button ,'String ','Stop')

618 set(handles.Stop_button ,'BackgroundColor ' ,[1,0,0])

619 set(handles.Run_button ,'BackgroundColor ' ,[0.925 ,0.914 ,0.847])

620

621 set(gcf ,'WindowButtonUpFcn ',{@ButtonUpFcn_Stop ,handles });

622 guidata(hObject , handles);

623

624 end

625 function ButtonUpFcn_Stop(src ,eventdata ,handles)

626

627 set(handles.Stop_button ,'String ','Stop')

628 set(handles.Stop_button ,'BackgroundColor ',[.925 ,0.914 ,0.847])

629

630

631

632 % --- Executes on button press in Run_button.

633 function Run_button_ButtonDownFcn(hObject , eventdata , handles)

634

635 if (handles.Nb_click_open_XY 6= 0)

636 global S1

637 set(handles.Run_button ,'String ','Run')

638 set(handles.Run_button ,'BackgroundColor ' ,[0.2 ,0.8 ,0])

639

640 % Creation of COM objects for communication with WinSpec

641 objExp = actxserver ('WinX32.ExpSetup ');

642 objDoc = actxserver ('WinX32.DocFile ');

643

644

645 % Acquisition sample area

646 X_max=str2num(get(handles.X_max_edit ,'String '));

647 Y_max=str2num(get(handles.Y_max_edit ,'String '));

648

649 % Acquisition mapping step size

650 Inc_X=get(handles.Step_Size_X_edit ,'String ')

651 Inc_Y=get(handles.Step_Size_Y_edit ,'String ')

Appendix A. Program codes 51

652

653 curDate = fix(clock);

654

655 fid = fopen(strcat(get(handles.Edit_Path ,'String '),'_parameters.txt '), 'a');

656 fprintf(fid , '%d-%d-%d %d:%d\r\n\r\nXmax > %d, Ymax >%d\r\n\r\nXstep > %s, Ystep > %s\r\n\r\n', ...

657 curDate (1), curDate (2), curDate (3), curDate (4), curDate (5),...

658 X_max , Y_max , Inc_X , Inc_Y);

659 fclose(fid);

660

661 X_pos =0;

662 Y_pos =0;

663 Y_index =0;

664 stepCounter =0;

665

666 handles.stop =0;

667

668 set(handles.Pos_Map_X ,'String ' ,0);

669 set(handles.Pos_Map_Y ,'String ' ,0);

670

671 % Step size compensation

672 Step_back=get(handles.Step_back ,'String ');

673 fprintf(S1 ,['1SU -',Step_back]);

674

675

676 maxDelay = 1000; % this corresponds to 10sec delay

677 statusBit = 1;

678

679 while (Y_pos ≤ Y_max)

680 if mod(Y_index ,2)==0

681 while (X_pos < X_max)

682 % incremant the step counter

683 stepCounter=stepCounter +1;

684

685 % record a spectrum at pos: (X_pos ,Y_pos) now with extra

686 % debugging

687

688 if objExp.Start (objDoc)

689 l = 0;

690

691 fprintf(1,'\nOpened file! Right now @ step %d \n', stepCounter);

692

693 while l < maxDelay

694 statusBit = objExp.GetParam ('EXP_RUNNING ');

695 if statusBit == 0

696 fprintf(1, ...

697 '\nReady with creating spectrum , moving to next step');

698 break;

699 end

Appendix A. Program codes 52

700 pause(0.01);

701 fprintf(1,'x');

702 l=l+1;

703 end

704

705 fprintf(1,'\n%d',l);

706 if l == maxDelay

707 fprintf(1, ['\n --\n', ...

708 'Maximum delay exceeded! In file %d'], ...

709 stepCounter);

710 objExp.Stop ();

711 pause(0.1);

712 end

713

714 objDoc.Close;

715 end

716

717 % Move in +X direction by Inc_X

718 fprintf(S1 ,['1PR',Inc_X])

719 wait_ready1(S1)

720 X_pos=X_pos+str2num(Inc_X);

721 set(handles.Pos_Map_X ,'String ',num2str(X_pos))

722

723 end

724 Y_index=Y_index +1;

725 else

726 while (X_pos >0)

727 % incremant the step counter

728 stepCounter=stepCounter +1;

729

730 % record a spectrum at pos: (X_pos ,Y_pos) now with extra

731 % debugging

732

733 if objExp.Start (objDoc)

734 l = 0;

735 while l < maxDelay

736 statusBit = objExp.GetParam ('EXP_RUNNING ');

737 if statusBit == 0

738 break;

739 end

740 pause(0.01);

741 l=l+1;

742 end

743 if l == maxDelay

744 sprintf('Maximum delay exceeded! In file %d',num2str(stepCounter));

745 end

746

747 objDoc.Close;

Appendix A. Program codes 53

748 end

749

750 % Move in -X direction by -Inc_X

751 fprintf(S1 ,['1PR -',Inc_X])

752 wait_ready1(S1)

753 X_pos=X_pos -str2num(Inc_X);

754 set(handles.Pos_Map_X ,'String ',num2str(X_pos))

755

756 end

757 Y_index=Y_index +1;

758 end

759

760 % record a spectrum at pos: (X_pos ,Y_pos) now with extra

761 % debugging

762

763 if objExp.Start (objDoc)

764 l = 0;

765 while l < maxDelay

766 statusBit = objExp.GetParam ('EXP_RUNNING ');

767 if statusBit == 0

768 break;

769 end

770 pause(0.01);

771 l=l+1;

772 end

773 if l == maxDelay

774 sprintf('Maximum delay exceeded! In file %d',num2str(stepCounter));

775 end

776

777 objDoc.Close;

778 end

779

780 % Move in +Y direction by Inc_Y

781 fprintf(S1 ,['2PR',Inc_Y])

782 wait_ready2(S1)

783 Y_pos=Y_pos+str2num(Inc_Y);

784 set(handles.Pos_Map_Y ,'String ',num2str(Y_pos))

785 end

786 set(handles.Run_button ,'BackgroundColor ' ,[0.925 ,0.914 ,0.847])

787

788 else

789 errordlg('Serial port need to be open','Error ');

790 end

791

792

793

794

795 % --- Wait until status S1 is ready

Appendix A. Program codes 54

796 function wait_ready1(port)

797 fprintf(port ,'1TS')

798 status=fscanf(port);

799 while (status (4) 6= '0')

800 fprintf(port ,'1TS');

801 status=fscanf(port);

802 end

803 %

804 % --- Wait until status S2 is ready

805 function wait_ready2(port)

806 fprintf(port ,'2TS')

807 status=fscanf(port);

808 while (status (4) 6= '0')

809 fprintf(port ,'2TS');

810 status=fscanf(port);

811 end

812 %

813 % ---

814

815

816

817

818

819 % ---

820 % Display data

821 % ---

822 %

823

824 function Edit_Path_Callback(hObject , eventdata , handles)

825

826

827

828

829

830

831

832 % --- Executes on slider movement.

833 function slider_E_Callback(hObject , eventdata , handles)

834

835 set(hObject ,'Max',handles.Max_slider);

836 set(hObject ,'SliderStep ',handles.SliderStep);

837

838 %obtains the slider value from the slider component

839 handles.sliderValue = get(handles.slider_E ,'Value ');

840

841 %puts the slider value into the edit text components

842 slider_ind=fix(handles.sliderValue)+1;

843

Appendix A. Program codes 55

844 set(handles.WV_Value ,'String ',num2str(slider_ind));

845

846 set(handles.WV ,'String ',num2str(handles.wl(slider_ind)));

847

848 set(handles.axes1 ,'NextPlot ','replacechildren ');

849

850 a=imagesc(handles.x ,handles.y ,handles.M (:,:, slider_ind));

851 set(a,'hittest ','off');

852

853 colorbar;

854 xlabel('steps ');

855 ylabel('steps ');

856

857 % Update handles structure

858 guidata(hObject , handles);

859

860

861

862

863

864 % --- Executes on button press in Display_Button.

865 function Display_Button_Callback(hObject , eventdata , handles)

866

867 % Creation Matrix Data

868 X_max=str2num(get(handles.X_max_edit ,'String '));

869 Y_max=str2num(get(handles.Y_max_edit ,'String '));

870

871 Inc_X=str2num(get(handles.Step_Size_X_edit ,'String '));

872 Inc_Y=str2num(get(handles.Step_Size_Y_edit ,'String '));

873

874 col=X_max/Inc_X +1;

875 lines=Y_max/Inc_Y +1;

876

877 file_num=col*lines;

878

879 M=zeros(lines ,col ,handles.pix);

880

881 k=0;

882 for i=1: lines

883 for j=1:col

884 fid = fopen ([strcat(get(handles.Edit_Path ,'String '),'\spec_'),num2str(k),'.SPE']);

885 %fid = fopen ('test_1.SPE ');

886 tmp = fread (fid , 3263, 'int8');

887 polynom_coeff = fread (fid , 6, 'double ');

888 tmp = fread (fid , 789, 'int8');

889 data = fread (fid , 'int32 ');

890 fclose (fid);

891 M(i,j,1:end)=data;

Appendix A. Program codes 56

892 k=k+1;

893 end

894 end

895 % inverting each second line to respect the scan motion

896 B=M(2:2:end ,:,:);

897 C=B(:,end :-1:1,:);

898 M(2:2:end ,: ,:)=C;

899

900 handles.M=M;

901

902 % Display map at wavelength index given by handles.sliderValue

903 handles.x = 0: Inc_X:X_max;

904 handles.y = 0: Inc_Y:Y_max;

905

906 axes(handles.axes1);

907

908 set(gca ,'NextPlot ','replacechildren ');

909

910 a=imagesc(handles.x ,handles.y ,...

911 handles.M (:,:,fix(handles.sliderValue)));

912

913 colorbar

914 xlabel('steps ');

915 ylabel('steps ');

916

917 handles.wl = polyval (polynom_coeff(end :-1:1) , 1: length(data))';

918

919 dataSpec = ones(1, 512);

920

921 dataSpec = squeeze(M(20 ,50 ,:));

922

923

924

925

926 figure (1)

927 plot(handles.wl , dataSpec);

928

929 % set(handles.axes1 ,'hittest ','off ');

930 set(a,'hittest ','off');

931

932 guidata(hObject , handles);

933

934

935

936 % --- Executes on mouse press over axes background.

937 function axes1_ButtonDownFcn(hObject , eventdata , handles)

938

939 location = get(handles.axes1 ,'CurrentPoint ');

Appendix A. Program codes 57

940 x = round(location (1,1))

941 y = round(location (1,2))

942

943 X_max=str2num(get(handles.X_max_edit ,'String '));

944 Y_max=str2num(get(handles.Y_max_edit ,'String '));

945

946 Inc_X=str2num(get(handles.Step_Size_X_edit ,'String '));

947 Inc_Y=str2num(get(handles.Step_Size_Y_edit ,'String '));

948

949 fileNum = y * (X_max/Inc_X +1) + x

950

951 fid = fopen ([strcat(get(handles.Edit_Path ,'String '),'\spec_'),num2str(fileNum),'.SPE']);

952 tmp = fread (fid , 3263, 'int8');

953 polynom_coeff = fread (fid , 6, 'double ');

954 tmp = fread (fid , 789, 'int8');

955

956 if (handle.pix == 512)

957 data = fread (fid , 'float ');

958 else

959 data = fread (fid , 'int32 ');

960 end

961

962

963 fclose (fid);

964

965 %TODO

966 % inverting each second line to respect the scan motion

967

968 % scale , poly coefficients...

969

970 scrsz = get(0,'ScreenSize ');

971

972 figure('Position ' ,[1 scrsz (4)/2 scrsz (3)/2 scrsz (4)/2])

973 plot(data);

974

975

976

977 % ---

978

979

980 % ---

981 % Close GUI function

982 % ---

983 %

984 function closeGUI(src ,evnt)

985

986 selection = questdlg('Are sure you want to close RT_setup?',...

987 'Close Request Function ',...

Appendix A. Program codes 58

988 'Yes','No','Yes');

989 switch selection ,

990 case 'Yes',

991 delete(gcf)

992

993 case 'No'

994 return

995 end

996 % ---

A.2 getbeam.m

1 % ---

2 % ---

3 % Subroutine to automatize beam

4 % are calculations @ Vlab

5 %

6 % David Lakatos , November 2009, TU Delft

7 % ---

8 % ---

9

10

11

12

13 function varargout = getBeam(varargin)

14 % GETBEAM M-file for getBeam.fig

15 % GETBEAM , by itself , creates a new GETBEAM or raises the existing

16 % singleton*.

17 %

18 % H = GETBEAM returns the handle to a new GETBEAM or the handle to

19 % the existing singleton*.

20 %

21 % GETBEAM('CALLBACK ',hObject ,eventData ,handles ,...) calls the local

22 % function named CALLBACK in GETBEAM.M with the given input arguments.

23 %

24 % GETBEAM('Property ','Value ',...) creates a new GETBEAM or raises the

25 % existing singleton*. Starting from the left , property value pairs are

26 % applied to the GUI before getBeam_OpeningFcn gets called. An

27 % unrecognized property name or invalid value makes property application

28 % stop. All inputs are passed to getBeam_OpeningFcn via varargin.

29 %

30 % *See GUI Options on GUIDE 's Tools menu. Choose "GUI allows only one

31 % instance to run (singleton)".

32 %

Appendix A. Program codes 59

33 % See also: GUIDE , GUIDATA , GUIHANDLES

34

35 % Edit the above text to modify the response to help getBeam

36

37 % Last Modified by GUIDE v2.5 14-Sep -2009 11:02:42

38

39 % Begin initialization code - DO NOT EDIT

40 gui_Singleton = 1;

41 gui_State = struct('gui_Name ', mfilename , ...

42 'gui_Singleton ', gui_Singleton , ...

43 'gui_OpeningFcn ', @getBeam_OpeningFcn , ...

44 'gui_OutputFcn ', @getBeam_OutputFcn , ...

45 'gui_LayoutFcn ', [] , ...

46 'gui_Callback ', []);

47 if nargin && ischar(varargin {1})

48 gui_State.gui_Callback = str2func(varargin {1});

49 end

50

51 if nargout

52 [varargout {1: nargout }] = gui_mainfcn(gui_State , varargin {:});

53 else

54 gui_mainfcn(gui_State , varargin {:});

55 end

56 % End initialization code - DO NOT EDIT

57

58

59 % --- Executes just before getBeam is made visible.

60 function getBeam_OpeningFcn(hObject , eventdata , handles , varargin)

61 % This function has no output args , see OutputFcn.

62 % hObject handle to figure

63 % eventdata reserved - to be defined in a future version of MATLAB

64 % handles structure with handles and user data (see GUIDATA)

65

66 backgroundImage = importdata('headerklimt.jpg ');

67 %select the axes

68 axes(handles.axes1);

69 %place image onto the axes

70 image(backgroundImage);

71 %remove the axis tick marks

72 axis off

73

74 backgroundImage = importdata('headerklimt2.jpg ');

75 %select the axes

76 axes(handles.axes2);

77 %place image onto the axes

78 image(backgroundImage);

79 %remove the axis tick marks

80 axis off

Appendix A. Program codes 60

81

82

83 % Choose default command line output for getBeam

84 handles.output = hObject;

85

86 % Update handles structure

87 guidata(hObject , handles);

88

89 % UIWAIT makes getBeam wait for user response (see UIRESUME)

90 % uiwait(handles.figure1);

91

92

93 % --- Outputs from this function are returned to the command line.

94 function varargout = getBeam_OutputFcn(hObject , eventdata , handles)

95 % varargout cell array for returning output args (see VARARGOUT);

96 % hObject handle to figure

97 % eventdata reserved - to be defined in a future version of MATLAB

98 % handles structure with handles and user data (see GUIDATA)

99

100 % Get default command line output from handles structure

101 varargout {1} = handles.output;

102

103

104

105 function edit2_Callback(hObject , eventdata , handles)

106 % hObject handle to edit2 (see GCBO)

107 % eventdata reserved - to be defined in a future version of MATLAB

108 % handles structure with handles and user data (see GUIDATA)

109

110 % Hints: get(hObject ,'String ') returns contents of edit2 as text

111 % str2double(get(hObject ,'String ')) returns contents of edit2 as a double

112

113

114 % --- Executes during object creation , after setting all properties.

115 function edit2_CreateFcn(hObject , eventdata , handles)

116 % hObject handle to edit2 (see GCBO)

117 % eventdata reserved - to be defined in a future version of MATLAB

118 % handles empty - handles not created until after all CreateFcns called

119

120 % Hint: edit controls usually have a white background on Windows.

121 % See ISPC and COMPUTER.

122 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

123 set(hObject ,'BackgroundColor ','white ');

124 end

125

126

127 % --- Executes on button press in viewButton.

128 function viewButton_Callback(hObject , eventdata , handles)

Appendix A. Program codes 61

129 % hObject handle to viewButton (see GCBO)

130 % eventdata reserved - to be defined in a future version of MATLAB

131 % handles structure with handles and user data (see GUIDATA)

132

133 figure

134 fileName = strcat('C:\ Documents and Settings\localadmin\Desktop\RT_setup ',...

135 get(handles.edit2 ,'String '));

136 a=imread(fileName);

137 b=a(:,:,1);

138 image(b);

139

140

141

142

143

144 % --- Executes on button press in radiobutton1.

145 function radiobutton1_Callback(hObject , eventdata , handles)

146 % hObject handle to radiobutton1 (see GCBO)

147 % eventdata reserved - to be defined in a future version of MATLAB

148 % handles structure with handles and user data (see GUIDATA)

149

150 % Hint: get(hObject ,'Value ') returns toggle state of radiobutton1

151

152

153 % --- Executes on button press in radiobutton2.

154 function radiobutton2_Callback(hObject , eventdata , handles)

155 % hObject handle to radiobutton2 (see GCBO)

156 % eventdata reserved - to be defined in a future version of MATLAB

157 % handles structure with handles and user data (see GUIDATA)

158

159 % Hint: get(hObject ,'Value ') returns toggle state of radiobutton2

160

161

162 % --- Executes on button press in pushbutton2.

163 function pushbutton2_Callback(hObject , eventdata , handles)

164 % hObject handle to pushbutton2 (see GCBO)

165 % eventdata reserved - to be defined in a future version of MATLAB

166 % handles structure with handles and user data (see GUIDATA)

167 fileName = strcat('C:\ Documents and Settings\localadmin\Desktop\RT_setup ',...

168 get(handles.edit2 ,'String '));

169 a=imread(fileName);

170 b=a(:,:,1);

171

172 if get(handles.radiobutton1 ,'Value ') == 1

173 %the X coordinate should be used

174 cut=b(:,str2num(get(handles.edit3 ,'String ')));

175 elseif get(handles.radiobutton1 ,'Value ') == 0

176 cut=b(str2num(get(handles.edit4 ,'String ')),:);

Appendix A. Program codes 62

177 end

178

179 figure

180 plot(cut);

181

182

183

184 function edit3_Callback(hObject , eventdata , handles)

185 % hObject handle to edit3 (see GCBO)

186 % eventdata reserved - to be defined in a future version of MATLAB

187 % handles structure with handles and user data (see GUIDATA)

188

189 % Hints: get(hObject ,'String ') returns contents of edit3 as text

190 % str2double(get(hObject ,'String ')) returns contents of edit3 as a double

191

192

193 % --- Executes during object creation , after setting all properties.

194 function edit3_CreateFcn(hObject , eventdata , handles)

195 % hObject handle to edit3 (see GCBO)

196 % eventdata reserved - to be defined in a future version of MATLAB

197 % handles empty - handles not created until after all CreateFcns called

198

199 % Hint: edit controls usually have a white background on Windows.

200 % See ISPC and COMPUTER.

201 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

202 set(hObject ,'BackgroundColor ','white ');

203 end

204

205

206

207 function edit4_Callback(hObject , eventdata , handles)

208 % hObject handle to edit4 (see GCBO)

209 % eventdata reserved - to be defined in a future version of MATLAB

210 % handles structure with handles and user data (see GUIDATA)

211

212 % Hints: get(hObject ,'String ') returns contents of edit4 as text

213 % str2double(get(hObject ,'String ')) returns contents of edit4 as a double

214

215

216 % --- Executes during object creation , after setting all properties.

217 function edit4_CreateFcn(hObject , eventdata , handles)

218 % hObject handle to edit4 (see GCBO)

219 % eventdata reserved - to be defined in a future version of MATLAB

220 % handles empty - handles not created until after all CreateFcns called

221

222 % Hint: edit controls usually have a white background on Windows.

223 % See ISPC and COMPUTER.

224 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

Appendix A. Program codes 63

225 set(hObject ,'BackgroundColor ','white');

226 end

227

228

229

230 function edit5_Callback(hObject , eventdata , handles)

231 % hObject handle to edit5 (see GCBO)

232 % eventdata reserved - to be defined in a future version of MATLAB

233 % handles structure with handles and user data (see GUIDATA)

234

235 % Hints: get(hObject ,'String ') returns contents of edit5 as text

236 % str2double(get(hObject ,'String ')) returns contents of edit5 as a double

237

238

239 % --- Executes during object creation , after setting all properties.

240 function edit5_CreateFcn(hObject , eventdata , handles)

241 % hObject handle to edit5 (see GCBO)

242 % eventdata reserved - to be defined in a future version of MATLAB

243 % handles empty - handles not created until after all CreateFcns called

244

245 % Hint: edit controls usually have a white background on Windows.

246 % See ISPC and COMPUTER.

247 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

248 set(hObject ,'BackgroundColor ','white ');

249 end

250

251

252

253 function edit6_Callback(hObject , eventdata , handles)

254 % hObject handle to edit6 (see GCBO)

255 % eventdata reserved - to be defined in a future version of MATLAB

256 % handles structure with handles and user data (see GUIDATA)

257

258 % Hints: get(hObject ,'String ') returns contents of edit6 as text

259 % str2double(get(hObject ,'String ')) returns contents of edit6 as a double

260

261

262 % --- Executes during object creation , after setting all properties.

263 function edit6_CreateFcn(hObject , eventdata , handles)

264 % hObject handle to edit6 (see GCBO)

265 % eventdata reserved - to be defined in a future version of MATLAB

266 % handles empty - handles not created until after all CreateFcns called

267

268 % Hint: edit controls usually have a white background on Windows.

269 % See ISPC and COMPUTER.

270 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '));

271 set(hObject ,'BackgroundColor ','white ');

272 end

Appendix A. Program codes 64

273

274

275 % --- Executes on button press in pushbutton3.

276 function pushbutton3_Callback(hObject , eventdata , handles)

277 % hObject handle to pushbutton3 (see GCBO)

278 % eventdata reserved - to be defined in a future version of MATLAB

279 % handles structure with handles and user data (see GUIDATA)

280

281 diff = abs(str2num(get(handles.edit5 ,'String ')) - str2num(get(handles.edit6 ,'String ')));

282

283 if get(handles.radiobutton1 ,'Value ') == 1

284 beamValue = 50/480* diff;

285

286 elseif get(handles.radiobutton1 ,'Value ') == 0

287

288 end

289

290 %set(handles.text3 ,'String ', num2str(beamValue));

291 set(handles.text3 ,'String ', ['Beam size: ',num2str(beamValue),' um']);

292

293 optE = (beamValue /2)^2 * pi * 10^-2 * 4.98;

294

295 set(handles.text6 ,'String ', ['Opt. energy: ',num2str(optE),' mW']);

296

297 handles.output = hObject;

298 guidata(hObject ,handles);

A.3 plemap.m

1 % ---

2 % ---

3 % PLE map automatisation @ Vlab

4 %

5 % David Lakatos , November 2009, TU Delft

6 % ---

7 % ---

8

9 function varargout = plemap(varargin)

10

11 % Begin initialization code - DO NOT EDIT

12 gui_Singleton = 1;

13 gui_State = struct('gui_Name ', mfilename , ...

14 'gui_Singleton ', gui_Singleton , ...

15 'gui_OpeningFcn ', @plemap_OpeningFcn , ...

Appendix A. Program codes 65

16 'gui_OutputFcn ', @plemap_OutputFcn , ...

17 'gui_LayoutFcn ', [] , ...

18 'gui_Callback ', []);

19 if nargin && ischar(varargin {1})

20 gui_State.gui_Callback = str2func(varargin {1});

21 end

22

23 if nargout

24 [varargout {1: nargout }] = gui_mainfcn(gui_State , varargin {:});

25 else

26 gui_mainfcn(gui_State , varargin {:});

27 end

28 % End initialization code - DO NOT EDIT

29

30

31 % --- Executes just before plemap is made visible.

32 function plemap_OpeningFcn(hObject , eventdata , handles , varargin)

33 global S1;

34

35 clc;

36

37 %deZIGNNN

38

39 backgroundImage = importdata('brecht.jpg ');

40 %select the axes

41 axes(handles.axes2);

42 %place image onto the axes

43 image(backgroundImage);

44 %remove the axis tick marks

45 axis off

46

47 backgroundImage = importdata('brecht2.jpg ');

48 %select the axes

49 axes(handles.axes3);

50 %place image onto the axes

51 image(backgroundImage);

52 %remove the axis tick marks

53 axis off

54

55 backgroundImage = importdata('brecht3.jpg ');

56 %select the axes

57 axes(handles.axes4);

58 %place image onto the axes

59 image(backgroundImage);

60 %remove the axis tick marks

61 axis off

62

63 % Serial communication INIT

Appendix A. Program codes 66

64

65 instrreset;

66

67 S1=serial('COM1');

68 set(S1 , 'BaudRate ', 115200 , 'DataBits ', 8, 'StopBits ', 1, 'FlowControl ', 'hardware ');

69

70 fopen(S1);

71

72 %Motor initialisation

73

74 if not(libisloaded('USMCDLL '))

75 loadlibrary('USMCDLL ','USMCDLL.h ')

76 end

77

78 global Devices_st;

79 global StartParam;

80 global State;

81 global Mode;

82

83 Devices_st = libstruct('USMC_Devices_st ');

84 StartParam = libstruct('USMC_StartParameters_st ');

85 State = libstruct('USMC_State_st ');

86 Mode = libstruct('USMC_Mode_st ');

87

88 %one member of the structure has to be initilised

89 Devices_st.NOD =0;

90

91 %Init command

92 retval=calllib('USMCDLL ', 'USMC_Init ', Devices_st);

93

94 %Get the status

95 Number_of_devices = Devices_st.NOD;

96

97 %every struct needs one field to be initialised

98 State.FullPower =1;

99 StartParam.Sdivisor =1;

100

101 retStart=calllib('USMCDLL ', 'USMC_GetStartParameters ', 0, StartParam);

102 retState=calllib('USMCDLL ', 'USMC_GetState ', 0, State);

103

104 if (retval ==0)

105 set(handles.motorStatus ,'String ','Initialised ');

106 set(handles.motorStatus ,'BackGroundColor ' ,[0.2 ,0.8 ,0]);

107 set(handles.motorStatus ,'ForegroundColor ' ,[1,1,1])

108

109 set(handles.temperature ,'String ',[num2str(State.Temp),' C ']);

110 set(handles.motorPos ,'String ',num2str(State.CurPos));

111 end

Appendix A. Program codes 67

112

113 handles.output = hObject;

114 guidata(hObject , handles);

115

116

117 % --- Outputs from this function are returned to the command line.

118 function varargout = plemap_OutputFcn(hObject , eventdata , handles)

119 % varargout cell array for returning output args (see VARARGOUT);

120 % hObject handle to figure

121 % eventdata reserved - to be defined in a future version of MATLAB

122 % handles structure with handles and user data (see GUIDATA)

123

124 % Get default command line output from handles structure

125 varargout {1} = handles.output;

126

127

128

129 function from_Callback(hObject , eventdata , handles)

130 % hObject handle to from (see GCBO)

131 % eventdata reserved - to be defined in a future version of MATLAB

132 % handles structure with handles and user data (see GUIDATA)

133

134 % Hints: get(hObject ,'String ') returns contents of from as text

135 % str2double(get(hObject ,'String ')) returns contents of from as a double

136

137

138 % --- Executes during object creation , after setting all properties.

139 function from_CreateFcn(hObject , eventdata , handles)

140 % hObject handle to from (see GCBO)

141 % eventdata reserved - to be defined in a future version of MATLAB

142 % handles empty - handles not created until after all CreateFcns called

143

144 % Hint: edit controls usually have a white background on Windows.

145 % See ISPC and COMPUTER.

146 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

147 set(hObject ,'BackgroundColor ','white ');

148 end

149

150

151

152 function to_Callback(hObject , eventdata , handles)

153 % hObject handle to to (see GCBO)

154 % eventdata reserved - to be defined in a future version of MATLAB

155 % handles structure with handles and user data (see GUIDATA)

156

157 % Hints: get(hObject ,'String ') returns contents of to as text

158 % str2double(get(hObject ,'String ')) returns contents of to as a double

159

Appendix A. Program codes 68

160

161 % --- Executes during object creation , after setting all properties.

162 function to_CreateFcn(hObject , eventdata , handles)

163 % hObject handle to to (see GCBO)

164 % eventdata reserved - to be defined in a future version of MATLAB

165 % handles empty - handles not created until after all CreateFcns called

166

167 % Hint: edit controls usually have a white background on Windows.

168 % See ISPC and COMPUTER.

169 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

170 set(hObject ,'BackgroundColor ','white');

171 end

172

173

174

175 function intsec_Callback(hObject , eventdata , handles)

176 % hObject handle to intsec (see GCBO)

177 % eventdata reserved - to be defined in a future version of MATLAB

178 % handles structure with handles and user data (see GUIDATA)

179

180 % Hints: get(hObject ,'String ') returns contents of intsec as text

181 % str2double(get(hObject ,'String ')) returns contents of intsec as a double

182

183

184 % --- Executes during object creation , after setting all properties.

185 function intsec_CreateFcn(hObject , eventdata , handles)

186 % hObject handle to intsec (see GCBO)

187 % eventdata reserved - to be defined in a future version of MATLAB

188 % handles empty - handles not created until after all CreateFcns called

189

190 % Hint: edit controls usually have a white background on Windows.

191 % See ISPC and COMPUTER.

192 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

193 set(hObject ,'BackgroundColor ','white ');

194 end

195

196

197 % --- Executes on button press in pushbutton1.

198 function pushbutton1_Callback(hObject , eventdata , handles)

199 % hObject handle to pushbutton1 (see GCBO)

200 % eventdata reserved - to be defined in a future version of MATLAB

201 % handles structure with handles and user data (see GUIDATA)

202 global StartParam;

203 global State;

204 global S1;

205

206 %creating COM objects to communicate with ActiveX server

207 objExp = actxserver ('WinX32.ExpSetup ');

Appendix A. Program codes 69

208 objDoc = actxserver ('WinX32.DocFile ');

209

210 %Set parameters in WInSpec

211 objExp.SetParam('EXP_FILEINCCOUNT ' ,0);

212 objExp.SetParam('EXP_DATFILENAME ','LastData ');

213 % objExp.SetParam('EXP_DATFILENAME ',['C:\ Documents and Settings\localadmin\Desktop\'...

214 % ,get(handles.path ,'String ')]);

215

216 from = str2num(get(handles.from ,'String '));

217 to = str2num(get(handles.to ,'String '));

218 step = str2num(get(handles.step ,'String '));

219

220 ∆=abs(from -to);

221

222 cycles = (∆/step)+1

223

224 pause (2);

225 StartParam.Sdivisor =1;

226

227 dataNorm = zeros(cycles ,4);

228

229 for i=0:(cycles -1)

230

231 %moving the amount needed

232 %% for MIRA calib = 206.68

233 %% for 3900 calib = -714.28

234 calib = -714.28;

235

236 calllib('USMCDLL ','USMC_Start ',0,(i*round(step*calib)),40.0,StartParam);

237

238

239

240 % this corresponds to integration time * 1.5...if the

241 % experimetn has not finished we move onto the next wavelength

242 %maxDelay = 150);

243 statusBit = 1;

244

245 %wait to reach next wavelength

246 pause (3);

247

248 fprintf(S1,':POWER?');

249 powTemp = str2num(fscanf(S1));

250

251 %normalisation file create

252 fid = fopen(['C:\ Documents and Settings\localadmin\Desktop\',...

253 get(handles.path ,'String '),'\normalization.txt '], 'a');

254

255 fprintf(fid , '%f %f\r\n', ...

Appendix A. Program codes 70

256 (from+i*step),powTemp);

257

258 fclose(fid);

259

260

261 dataNorm ((i+1),1) = i;

262 dataNorm ((i+1),2) = powTemp;

263

264 %reached wavelength , now let 's record spectrum

265 if objExp.Start (objDoc)

266 l = 0;

267 while l < 100000

268 statusBit = objExp.GetParam ('EXP_RUNNING ');

269 if statusBit == 0

270 break;

271 end

272 pause(0.01);

273 l=l+1;

274 end

275 % if l == maxDelay

276 % sprintf('Maximum delay exceeded! In file %d',num2str(cycles));

277 % end

278

279 objDoc.Close;

280 end

281 %updating information about the motor

282 calllib('USMCDLL ', 'USMC_GetState ', 0, State);

283 set(handles.temperature ,'String ',[num2str(State.Temp),' C ']);

284 set(handles.motorPos ,'String ',num2str(State.CurPos));

285 set(handles.curWL ,'String ',num2str(from+i*step));

286 end

287

288 %DISPLAY

289

290 M=zeros(cycles ,512);

291 length(M);

292 a=1;

293

294 [z,zz] = textread(...

295 ['C:\ Documents and Settings\localadmin\Desktop\',...

296 get(handles.path ,'String '),'\normalization.txt '], ...

297 '%f %f', cycles);

298

299 A = [z,zz];

300 sortrows(A,1);

301

302 excitation = A(: ,1);

303 power = A(: ,2);

Appendix A. Program codes 71

304

305 maxPower = max(power);

306

307 axesExcitation = sort(excitation);

308

309 for k = 0:(cycles -1)

310 fid = fopen (...

311 ['C:\ Documents and Settings\localadmin\Desktop\',...

312 get(handles.path ,'String '),...

313 '\LastData ',num2str(k),'.SPE']);

314

315 tmp = fread (fid , 3263, 'int8');

316 polynom_coeff = fread (fid , 6, 'double ');

317 tmp = fread (fid , 789, 'int8');

318 intensity = fread (fid , 'float ');

319

320 fclose(fid);

321

322 emission = polyval (polynom_coeff(end :-1:1) , 1: length(intensity));

323

324 for l = 1:512

325 M(a,l) = (power(a) * intensity(l)) / maxPower;

326 end

327 a=a+1;

328 end

329

330 figure (1)

331 imagesc(emission ,axesExcitation ,M(: ,:));

332 title('PLE map','fontsize ',12,'fontweight ','b')

333 xlabel('Emission wavelength [nm]')

334 ylabel('Excitation wavelength [nm]')

335

336 %END OF DISPLAY

337

338 handles.output = hObject;

339 guidata(hObject , handles);

340

341

342 function step_Callback(hObject , eventdata , handles)

343 % hObject handle to step (see GCBO)

344 % eventdata reserved - to be defined in a future version of MATLAB

345 % handles structure with handles and user data (see GUIDATA)

346

347 % Hints: get(hObject ,'String ') returns contents of step as text

348 % str2double(get(hObject ,'String ')) returns contents of step as a double

349

350

351 % --- Executes during object creation , after setting all properties.

Appendix A. Program codes 72

352 function step_CreateFcn(hObject , eventdata , handles)

353 % hObject handle to step (see GCBO)

354 % eventdata reserved - to be defined in a future version of MATLAB

355 % handles empty - handles not created until after all CreateFcns called

356

357 % Hint: edit controls usually have a white background on Windows.

358 % See ISPC and COMPUTER.

359 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

360 set(hObject ,'BackgroundColor ','white');

361 end

362

363

364 % --- If Enable == 'on ', executes on mouse press in 5 pixel border.

365 % --- Otherwise , executes on mouse press in 5 pixel border or over motorStatus.

366 function motorStatus_ButtonDownFcn(hObject , eventdata , handles)

367 % hObject handle to motorStatus (see GCBO)

368 % eventdata reserved - to be defined in a future version of MATLAB

369 % handles structure with handles and user data (see GUIDATA)

370

371

372

373 function setPos_Callback(hObject , eventdata , handles)

374 % hObject handle to setPos (see GCBO)

375 % eventdata reserved - to be defined in a future version of MATLAB

376 % handles structure with handles and user data (see GUIDATA)

377

378 % Hints: get(hObject ,'String ') returns contents of setPos as text

379 % str2double(get(hObject ,'String ')) returns contents of setPos as a double

380

381

382 % --- Executes during object creation , after setting all properties.

383 function setPos_CreateFcn(hObject , eventdata , handles)

384 % hObject handle to setPos (see GCBO)

385 % eventdata reserved - to be defined in a future version of MATLAB

386 % handles empty - handles not created until after all CreateFcns called

387

388 % Hint: edit controls usually have a white background on Windows.

389 % See ISPC and COMPUTER.

390 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

391 set(hObject ,'BackgroundColor ','white ');

392 end

393

394

395 % --- Executes on button press in pushbutton2.

396 function pushbutton2_Callback(hObject , eventdata , handles)

397 % hObject handle to pushbutton2 (see GCBO)

398 % eventdata reserved - to be defined in a future version of MATLAB

399 % handles structure with handles and user data (see GUIDATA)

Appendix A. Program codes 73

400 global StartParam

401 global State

402

403 calllib('USMCDLL ','USMC_SetCurrentPosition ',0,str2num ...

404 (get(handles.setPos ,'String ')));

405

406 calllib('USMCDLL ', 'USMC_GetState ', 0, State);

407

408 set(handles.temperature ,'String ',[num2str(State.Temp),' C ']);

409 set(handles.motorPos ,'String ',num2str(State.CurPos));

410

411

412 handles.output = hObject;

413 guidata(hObject , handles);

414

415

416

417 function moveEdit_Callback(hObject , eventdata , handles)

418 % hObject handle to moveEdit (see GCBO)

419 % eventdata reserved - to be defined in a future version of MATLAB

420 % handles structure with handles and user data (see GUIDATA)

421

422 % Hints: get(hObject ,'String ') returns contents of moveEdit as text

423 % str2double(get(hObject ,'String ')) returns contents of moveEdit as a double

424

425

426 % --- Executes during object creation , after setting all properties.

427 function moveEdit_CreateFcn(hObject , eventdata , handles)

428 % hObject handle to moveEdit (see GCBO)

429 % eventdata reserved - to be defined in a future version of MATLAB

430 % handles empty - handles not created until after all CreateFcns called

431

432 % Hint: edit controls usually have a white background on Windows.

433 % See ISPC and COMPUTER.

434 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

435 set(hObject ,'BackgroundColor ','white ');

436 end

437

438

439 % --- Executes on button press in moveSet.

440 function moveSet_Callback(hObject , eventdata , handles)

441 % hObject handle to moveSet (see GCBO)

442 % eventdata reserved - to be defined in a future version of MATLAB

443 % handles structure with handles and user data (see GUIDATA)

444 global State

445 global StartParam

446

447

Appendix A. Program codes 74

448 %if the Wl has been set we can move

449 if(strcmp(get(handles.curWL ,'String '),'?'))

450 else

451 to=str2num(get(handles.moveEdit ,'String '));

452 from=str2num(get(handles.curWL ,'String '));

453 ∆=to -from;

454

455 calllib('USMCDLL ', 'USMC_GetState ', 0, State);

456 curPos=State.CurPos;

457

458 %% for MIRA calib = 206.68

459 %% for 3900 calib = -714.28

460 calib = -714.28;

461

462 steps2move = round(∆ * calib);

463 StartParam.Sdivisor =1;

464

465 calllib('USMCDLL ','USMC_Start ',0,(curPos+steps2move),40.0,StartParam);

466 set(handles.curWL ,'String ',num2str(to));

467 end

468

469 handles.output = hObject;

470 guidata(hObject , handles);

471

472

473 function setWL_Callback(hObject , eventdata , handles)

474 % hObject handle to setWL (see GCBO)

475 % eventdata reserved - to be defined in a future version of MATLAB

476 % handles structure with handles and user data (see GUIDATA)

477

478 % Hints: get(hObject ,'String ') returns contents of setWL as text

479 % str2double(get(hObject ,'String ')) returns contents of setWL as a double

480

481

482 % --- Executes during object creation , after setting all properties.

483 function setWL_CreateFcn(hObject , eventdata , handles)

484 % hObject handle to setWL (see GCBO)

485 % eventdata reserved - to be defined in a future version of MATLAB

486 % handles empty - handles not created until after all CreateFcns called

487

488 % Hint: edit controls usually have a white background on Windows.

489 % See ISPC and COMPUTER.

490 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

491 set(hObject ,'BackgroundColor ','white ');

492 end

493

494

495 % --- Executes on button press in pushbutton3.

Appendix A. Program codes 75

496 function pushbutton3_Callback(hObject , eventdata , handles)

497 % hObject handle to pushbutton3 (see GCBO)

498 % eventdata reserved - to be defined in a future version of MATLAB

499 % handles structure with handles and user data (see GUIDATA)

500

501 temp = str2num(get(handles.setWL ,'String '));

502 set(handles.curWL ,'String ',num2str(temp));

503

504

505 function pathNorm_Callback(hObject , eventdata , handles)

506 % hObject handle to pathNorm (see GCBO)

507 % eventdata reserved - to be defined in a future version of MATLAB

508 % handles structure with handles and user data (see GUIDATA)

509

510 % Hints: get(hObject ,'String ') returns contents of pathNorm as text

511 % str2double(get(hObject ,'String ')) returns contents of pathNorm as a double

512

513

514 % --- Executes during object creation , after setting all properties.

515 function pathNorm_CreateFcn(hObject , eventdata , handles)

516 % hObject handle to pathNorm (see GCBO)

517 % eventdata reserved - to be defined in a future version of MATLAB

518 % handles empty - handles not created until after all CreateFcns called

519

520 % Hint: edit controls usually have a white background on Windows.

521 % See ISPC and COMPUTER.

522 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

523 set(hObject ,'BackgroundColor ','white ');

524 end

525

526

527

528 function path_Callback(hObject , eventdata , handles)

529 % hObject handle to path (see GCBO)

530 % eventdata reserved - to be defined in a future version of MATLAB

531 % handles structure with handles and user data (see GUIDATA)

532

533 % Hints: get(hObject ,'String ') returns contents of path as text

534 % str2double(get(hObject ,'String ')) returns contents of path as a double

535

536

537 % --- Executes during object creation , after setting all properties.

538 function path_CreateFcn(hObject , eventdata , handles)

539 % hObject handle to path (see GCBO)

540 % eventdata reserved - to be defined in a future version of MATLAB

541 % handles empty - handles not created until after all CreateFcns called

542

543 % Hint: edit controls usually have a white background on Windows.

Appendix A. Program codes 76

544 % See ISPC and COMPUTER.

545 if ispc && isequal(get(hObject ,'BackgroundColor '), get(0,'defaultUicontrolBackgroundColor '))

546 set(hObject ,'BackgroundColor ','white');

547 end

Appendix B

Graphical User Interfaces

77

Appendix B. Graphical User Interfaces 78

F
ig

u
r
e

B
.1

:
G

U
I

fo
r

th
e

sa
m

pl
e

m
ap

pi
ng

au
to

m
at

iz
at

io
n

an
d

st
ag

e
co

nt
ro

l

Appendix B. Graphical User Interfaces 79

Figure B.2: GUI for the beam area calculation

Appendix B. Graphical User Interfaces 80

Figure B.3: GUI for the PLE mapping automatization

Appendix C

Table for assigning chiral indices

81

Appendix C. Table for assigning chiral indices to nanotubes 82

Figure C.1: Table for assigning chiral indices to nanotubes based on their E11 and E22 energies

Bibliography

[1] Sumio Iijima. Synthesis of carbon nanotubes. Nature, 354:56–58, 1991.

[2] Marcus Freitag Phaedon Avouris and Vasili Perebeinos. Carbon-nanotube photonics and

optoelectronics. Nature Photonics 2, 341 - 350, 2008.

[3] M Winger A Imamoglu A Hgele, C Galland. Photon antibunching in the photoluminescence

spectra of a single carbon nanotube. Physical review letters, 2008.

[4] A Imamoglu C Galland. All-optical manipulation of electron spins in carbon-nanotube

quantum dots. Physical review letters, 2008.

[5] X. Blase. J.-C. Charlier and S. Roche. Electronic and transport properties of nanotubes.

Rev. Mod. Phys. 79, 677, 2007.

[6] S. K. Doorn X. Z. Liao Y. H. Zhao E. A.Akhadov M. A. Hoofbauer B. J. Roop Q. X. Jia

R. C. Dye D. E. Peterson S. M. Huang J. Liu L. X. Zheng, M. J. OConell and Y. T. Zhu.

Ultralong single-wall carbon nanotubes. Nature Materials 3,673-676, 2004.

[7] Rodney S. Ruoff and Donald C. Lorents. Mechanical and thermal properties of carbon

nanotubes. Elsevier Science, 1995.

[8] E Lass B Wei PM Ajayan A Modi, N Koratkar. Miniaturized gas ionization sensors using

carbon nanotubes. Nature, 2005.

[9] Q Wang M Lundstrom H Dai A Javey, J Guo. Ballistic carbon nanotube field-effect

transistors. Letters to Nature, 1999.

[10] J. P. Lu. Elastic properties of carbon nanotubes and nanoropes. Physical Rev. Lett., 1997.

[11] J. Maultzsch S. Reich and C. Thomsen. Tight-binding description of graphene. Phys. Rev.

B 66, 035412, 2002.

83

Bibliography 84

[12] G. Dresselhaus M. S. Dresselhaus and A. Jorio. Unusual properties and structure of carbon

nanotube. Annu. Rev. Mater., 34:247, 2004.

[13] Chad B. Huffman Valerie C. Moore Michael S. Strano Erik H. Haroz Kristy L. Rialon Peter

J. Boul William H. Noon Carter Kittrell Jianpeng Ma Robert H. Hauge R. Bruce Weisman

Richard E. Smalley Michael J. O’Connell, Sergei M. Bachilo. Band gap fluorescence from

individual single-walled carbon nanotubes. Science, Vol. 297. no. 5581, pp. 593 - 596,

2002.

[14] Strano M S et al. Reversible, band-gap-selective protonation of single-walled carbon nan-

otubes in solution. J. Phys. Chem. B 107 697985, 2003.

[15] Kiowski O Hennrich F Arnold K, Lebedkin S and Kappes. Matrix-imposed stress-induced

shifts in the photoluminescence of single-walled carbon nanotubes at low temperatures.

Nano Lett. 4 234954, 2004.

[16] Murakami Y Kishimoto S Maruyama S Ohno Y, Iwasaki S and Mizutani T. Excitonic tran-

sition energies in single-walled carbon nanotubes: dependence on environmental dielectric

constant. E Phys. Status Solidi b, 244 40025, 2007.

[17] Homma Y Lefebvre J and Finnie. Bright band gap photoluminescence from unprocessed

single-walled carbon nanotubes. Phys. Rev. Lett. 90 217401, 2003.

[18] Homma Y Lefebvre J, Fraser J M and Finnie. Photoluminescence from single-walled carbon

nanotubes: a comparison between suspended and micelle-encapsulated nanotubes. Appl.

Phys. A 78 110710, 2004.

[19] Louis E. Brus Tony F. Heinz Feng Wang, Gordana Dukovic. The optical resonances in

carbon nanotubes arise from excitons. Science, Vol. 308. no. 5723, pp. 838 - 841, 2005.

[20] Yoshihiro Kobayashi Yoshikazu Homma and Toshio Ogino. Growth of suspended carbon

nanotube networks on 100-nm-scale silicon pillars. APPLIED PHYSICS LETTERS, VOL-

UME 81, NUMBER 12:2261–62, 2002.

[21] Ogino T Homma Y, Kobayashi Y and Yamashita T. Growth of suspended carbon nanotube

networks on 100-nm-scale silicon pillars. Appl. Phys. Lett. 81 22613, 2002.

[22] Shohei Chiashi Yoshikazu Homma and Yoshihiro Kobayashi. Suspended single-wall carbon

nanotubes: synthesis and optical properties. REPORTS ON PROGRESS IN PHYSICS,

2009.

Bibliography 85

[23] Suzuki S and Kobayashi Y. Healing of low-energy irradiation-induced defects in single-

walled carbon nanotubes at room temperature. J. Phys. Chem. C 111 45248, 2007.

[24] http://www.princetoninstruments.com/products/speccam/spec10.

[25] D. Mann et al. Electrically driven thermal light emission form individual single-walled

carbon nanotubes. Nature Nanotech 2, 33, 2007.

[26] O. N. Torrens et al. Photoluminescence from intertube carrier migration in single-walled

carbon nanotube bundles. Nanolett. 6, 2864, 2006.

[27] J. Lefebvre et al. Phys. Rev. B 69, 075403, 2004.

[28] M. W. B. Wilson. Investigations into the optical properties of individual, air-suspended,

single-walled carbon nanotubes. Master thesis, Queen’s University, Kingston, Canada,

2008.

[29] K. Kaminska et al. Real-time global raman imaging and optical manipulation of suspended

carbon nanotubes. Phys. Rev. B 73, 235410, 2006.

[30] Carter Kittrell Robert H. Hauge Richard E. Smalley R. Bruce Weisman Sergei M. Bachilo,

Michael S. Strano. Structure-assigned optical spectra of single-walled carbon nanotubes.

Science, Vol. 298. no. 5602, pp. 2361 - 2366, 2005.

[31] G. A. Steele et al. Tunable few-electron double quantum dots and klein tunnelling in

ultra-clean carbon nanotubes. Nature Nanotechnology 4, 363 - 367, 2009.

Acknowledgements

First of all I would like to thank my supervisors dr. Gilles Buchs and András Reichardt, without

them this thesis would not have been possible.

Gilles, thank you for the countless hours spent in the lab and in front of the whiteboard squeezing

physics into an engineer’s mind and also for your patience while you were educating me.

András köszönöm mindazt a támogatást amit az évek során kaptam tŏled, mind a TDK dolgo-

zatom, mind a szakdolgozat kész̈ıtése közben.

I would like to thank Leo Kouwenhoven and Val Zwiller for accepting me to the group and for

providing guidance and helpful feedback on my work.

I also would like to acknowledge other people who helped me during my work. A not complete

list of them: Martin, Martin, Reinier, Ilse ans Benny from Delft, Zsolt and Gábor from BME

and Ildikó Varga form the Eramus Office in Budapest, who made it possible for me to spend 5

months in Delft.

I would also like to acknowledge nicotine, caffeine and alcohol as essential supporters of my

thesis work.

86

	Declaration of Authorship
	List of Figures
	Abbreviations
	1 Introduction
	2 Background
	2.1 Single wall carbon nanotubes
	2.1.1 Atomic structure
	2.1.2 Electronic structure
	2.1.3 Optical properties

	2.2 Synthesis
	2.2.1 Sample preparation methods
	2.2.2 Samples used in the experiments

	3 Experimental design
	3.1 Equipment
	3.1.1 Confocal microscope setup
	3.1.2 Spectrometer
	3.1.3 Lasers
	3.1.4 Motors
	3.1.5 Power meter

	3.2 Description of the measurement procedures
	3.3 PLE mapping automatization
	3.3.1 Manual search and sample mapping

	4 Results
	4.1 Locating SWCNTs
	4.2 The aging effect of SWCNTs
	4.3 Sample mapping
	4.4 PLE mapping

	5 Conclusion and Outlook
	5.1 Conclusion and outlook

	A Program codes
	A.1 RT_Setup.m
	A.2 getbeam.m
	A.3 plemap.m

	B Graphical User Interfaces
	C Table for assigning chiral indices
	Bibliography
	Acknowledgements

